• Title/Summary/Keyword: 적층 수

Search Result 1,391, Processing Time 0.03 seconds

A Study on the Analysis of the Trend of installations Using 3D Printing Technique (3D프린팅 조형설치물 경향분석에 관한 연구)

  • Kim, Ji Min;Lee, Tae Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.52-60
    • /
    • 2021
  • The aim of this study was to derive a new trend by analyzing installations using 3D printing that are out of the limits of size and design according to the trends of developing 3D printing technology. This paper classified the types of installations using 3D printing and analyzed them with two trends: the trend of design and the trend of output. The trends of installations using 3D printing derived from this study are as follows. First, as the implementation of design through an algorithm is accomplished, the transformation appears with the atypical design that is prominent in complex expression. Second, Robotics and FDM 3D Printing is fused, which is changing the existing paradigm. Therefore, the production and utilization of installations using 3D printing proceeded at a faster pace through the interaction between the algorithm design method and freeform 3D printing technology. This study was conducted on installations using 3D printing around the world and played a basic role in the research on the production of installations using 3D printing along with domestic 3D printing technology to be developed in the future. Follow-up studies in various aspects, such as materials and combination methods, will be needed.

A Study on Simplifying Flow Analysis of VaRI Process (VaRI 공정 유동해석 간소화 방법에 대한 연구)

  • Kim, Yeongmin;Lee, Jungwan;Kim, Jungsoo;Ahn, Sehoon;Oh, Youngseok;Yi, Jin Woo;Kim, Wiedae;Um, Moon-kwang
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.233-240
    • /
    • 2021
  • VaRI(Vacuum assisted Resin Infusion) process, which is cost effective and suitable for manufacturing large-sized composites, is an OoA(Out-of Autoclave) process. For rapid resin infusion in the VaRI process, a DM(distribution media) is placed on top of the fabric. The resin is rapidly supplied in plane direction of the fiber along the DM, and then the supplied resin is impregnated in the out-of-plane direction of fiber. It is difficult to predict the flow of resin because the flow of in-plane direction and the out-of-plane direction occur together, and a 3D numerical analysis program is used to simulate the resin infusion process. However, in order to analyze in 3D, many elements are required in the out-of-plane direction of fabric. And the product size is larger, the longer the analysis time needs. Therefore, in this study, a method was suggested to reduce the time required for flow analysis by simplifying the 3D flow analysis to 2D flow analysis. The usefulness was verified by comparing the 3D flow analysis with the simplified 2D flow analysis at the same conditions. The filling time error was about 7% and the reduction of flow analysis time was about 95%. In addition, by utilizing the constant difference in the flow front between the top, middle, and bottom of the fabric of the 3D analysis, the flow front of the top, middle, and bottom of the fabric can be also predicted in the 2D flow analysis.

Thermal Stress Induced Spalling of Metal Pad on Silicon Interposer (열응력에 의한 실리콘 인터포저 위 금속 패드의 박락 현상)

  • Kim, Junmo;Kim, Boyeon;Jung, Cheong-Ha;Kim, Gu-sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.25-29
    • /
    • 2022
  • Recently, the importance of electronic packaging technology has been attracting attention, and heterogeneous integration technology in which chips are stacked out-of-plane direction is being applied to the electronic packaging field. The 2.5D integration circuit is a technology for stacking chips using an interposer including TSV, and is widely used already. Therefore, it is necessary to make the interposer mechanically reliable in the packaging process that undergoes various thermal processes and mechanical loadings. Considering the structural characteristics of the interposer on which several thin films are deposited, thermal stress due to the difference in thermal expansion coefficients of materials can have a great effect on reliability. In this study, the mechanical reliability of the metal pad for wire bonding on the silicon interposer against thermal stress was evaluated. After heating the interposer to the solder reflow temperature, the delamination of the metal pad that occurred during cooling was observed and the mechanism was investigated. In addition, it was confirmed that the high cooling rate and the defect caused by handling promote delamination of the metal pads.

Load-Displacement Relationship of Passive Vibration Units Composed with a Spring and Vibration-Proof Rubbers (스프링과 방진고무가 융합된 제진장치의 하중-변위 관계)

  • Mun, Ju-Hyun;Im, Chae-Rim;Wang, Hye-Rin;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.226-234
    • /
    • 2021
  • The objective of this study is to establish the fundamental design data for axial load-displacement relationship under axial monotonic or cyclic responses of seismic damping·isolation (SDI) units developed for ceiling structures. The main parameters include the installation of a spring, the number of rubber layer, prestress stress of bolts for connector between the spring and rubbers, and loading type. Test results showed that SDI units with a spring in the core and higher prestress stress of bolts tended to be higher stiffness at the ascending branch and more ductile behavior at the descending branch. This trends more notable for the specimens under monotonic load rather than cyclic loads. Consequently, the energy dissipation of SDI unit can be optimally designed with the following conditions: installation of a spring within 3-layer rubbers and prestress applied to the bolts at 10% of their yielding strength . When compared with the experimental tension capacity of the developed SDI units, the predictions by JIS B 2704-1 and KDS 31 00 are conservative under monotonic loading but higher by approximately 10% under cyclic loading.

Multi-scale Progressive Fatigue Damage Model for Unidirectional Laminates with the Effect of Interfacial Debonding (경계면 손상을 고려한 적층복합재료에 대한 멀티스케일 피로 손상 모델)

  • Dongwon Ha;Jeong Hwan Kim;Taeri Kim;Young Sik Joo;Gun Jin Yun
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • This paper presents a multi-scale progressive fatigue damage model incorporating the model for interfacial debonding between fibers and matrix. The micromechanics model for the progressive interface debonding was adopted, which defined the four different interface phases: (1) perfectly bonded fibers; (2) mild imperfect interface; (3) severe imperfect interface; and (4) completely debonded fibers. As the number of cycles increases, the progressive transition from the perfectly bonded state to the completely debonded fiber state occurs. Eshelby's tensor for each imperfect state is calculated by the linear spring model for a damaged interface, and effective elastic properties are obtained using the multi-phase homogenization method. The fatigue damage evolution formulas for fiber, matrix and interface were proposed to demonstrate the fatigue behavior of CFRP laminates under cyclic loading. The material parameters for the fiber/matrix fatigue damage were characterized using the chaotic firefly algorithm. The model was implemented into the UMAT subroutine of ABAQUS, and successfully validated with flat-bar UD laminate specimens ([0]8,[90]8, [30]16) of AS4/3501-6 graphite/epoxy composite.

Enhancement of Buckling Characteristics for Composite Square Tube by Load Type Analysis (하중유형 분석을 통한 좌굴에 강한 복합재료 사각관 설계에 관한 연구)

  • Seokwoo Ham;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • The PIC design method is assigning different stacking sequences for each shell element through the preliminary FE analysis. In previous study, machine learning was applied to the PIC design method in order to assign the region efficiently, and the training data is labeled by dividing each region into tension, compression, and shear through the preliminary FE analysis results value. However, since buckling is not considered, when buckling occurs, it can't be divided into appropriate loading type. In the present study, it was proposed PIC-NTL (PIC design using novel technique for analyzing load type) which is method for applying a novel technique for analyzing load type considering buckling to the conventional PIC design. The stress triaxiality for each ply were analyzed for buckling analysis, and the representative loading type was designated through the determined loading type within decision area divided into two regions of the same size in the thickness direction of the elements. The input value of the training data and label consisted in coordination of element and representative loading type of each decision area, respectively. A machine learning model was trained through the training data, and the hyperparameters that affect the performance of the machine learning model were tuned to optimal values through Bayesian algorithm. Among the tuned machine learning models, the SVM model showed the highest performance. Most effective stacking sequence were mapped into PIC tube based on trained SVM model. FE analysis results show the design method proposed in this study has superior external loading resistance and energy absorption compared to previous study.

Electrochemical Characteristics of CFX Based Lithium Primary Batteries Produced by Carbon Fiber Reinforced Plastic -Derived Waste Carbon Fibers (탄소섬유강화플라스틱 유래 폐 탄소섬유로 제조된 불화탄소 기반 리튬일차전지의 전기화학적 특성)

  • Naeun Ha;Chaehun Lim;Seongmin Ha;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.515-521
    • /
    • 2023
  • In this study, waste carbon fiber obtained by pyrolysis of carbon fiber reinforced plastic (CFRP) was used to produce carbon fluoride through vapor phase fluorination and recycled as a reducing electrode material for lithium primary batteries. First, the physicochemical properties of the waste carbon fiber obtained by pyrolysis were determined, and the structural and chemical properties of carbon fluoride were analyzed to evaluate the effect of vapor phase fluorination on the waste carbon fiber. XRD analysis confirmed that the hexagonal network carbon laminated structure (002 peak) of the waste carbon fiber was gradually converted into a carbon fluoride structure (CFX, 001 peak) as the temperature of gas phase fluorination increased. The discharge capacity of the lithium primary battery produced using this carbon fluoride was up to 862 mAh/g. This was compared to the discharge capacity of carbon fluoride-based Li-ion batteries made of other carbon materials. These results suggest that carbon fluoride made from waste CFRP-based carbon fibers can be used as a reducing electrode material for Li-ion batteries.

Manufacture and Qualification of Composite Main Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 주반사판 제작 및 검증)

  • Dong-Geon Kim;Hyun-Guk Kim;Dong-Yeon Kim;Kyung-Rae Koo;Ji-min An;O-young Choi
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.219-225
    • /
    • 2024
  • It is essential to develop a light-weight, high-performance structure for the deployable reflector antenna, which is the payload of a reconnaissance satellite, considering launch and orbital operation performance. Among them, the composite main reflector is a key component that constitutes a deployable reflector antenna. In particular, the development of a high-performance main reflector is required to acquire high-quality satellite images after agile attitude control maneuvers during satellite missions. To develop main reflector, the initial design of the main reflector was confirmed considering the structural performance according to the laminate stacking design and material properties of the composite main reflector that constitutes the deployable reflector antenna. Based on the initial design, four types of composite main reflectors were manufactured with the variable for manufacturing process. As variables for manufacturing process, the curing process of the composite structure, the application of adhesive film between the carbon fiber composite sheet and the honeycomb core, and the venting path inside the sandwich composite were selected. After manufacture main reflector, weight measurement, non-destructive testing(NDT), surface error measurement, and modal test were performed on the four types of main reflectors produced. By selecting a manufacturing process that does not apply adhesive film and includes venting path, for a composite main reflector with light weight and structural performance, we developed and verified a main reflector that can be applied to the SAR(Synthetic Aperture Rader) satellite.

Countermeasure and Outbreak Mechanism of Cochlodinium polykrikoides red tide 1. Environmental characteristics on outbreak and disappearanceof C. polykrikoides bloom (Cochlodinium polykrikoides 적조 발생기작과 대책 1. Cochlodinium polykrikoides 적조 발생과 소멸의 환경특성)

  • Park, Young-Tae;Kim, Young-Sug;Kim, Kui-Young;Park, Jong-Soo;Go, Woo-Jin;Jo, Yeong-Jo;Park, Seong-Yoon;Lee, Young-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.259-264
    • /
    • 2001
  • Typhoon and neap tide on Cochlodinium polykrikoides bloom and water temperature on disappearance of C. polykrikoides bloom were investigated to elucidate the outbreak mechanism of C. polykrikoides blooms at Naro and Namhae coastal area in South Sea of Korea. The first observation of C. polykrikoides blooms were observed when thermocline was disappeared by typhoon, tide, etc. The first blooms of C. polykrikoides were observed on neap tide or before one day from neap tide in 1996-1998 and 2000. However, thermocline was disappeared by typhoon in 1994 and 1999, the first blooms were observed early 12-30 day than 1996-1998 and 2000. The main reason of disappearance of C. polykrikoides blooms after typhoon on 1997-2000 seems to be other environmental change by typhoon rather than low water temperature. In the future, the first C. polykrikoides bloom will be appear around the first neap tide of latter part of August with breaking down of thermocline, but if the thermocline be collapsed by typhoon in July, the C. polykrikoides bloom will be appear at beginning of August. The outbreak of C. polykrikoides blooms will be explain as follows: The vegetative cells, which was germinated by environmental change or already exist in surface water at low level, input to the surface water, and then nutrients and trace metals which were suppled from out side of C. polykrikoides bloom area inflow to surface. The vegetative cells are growth by the nutrients and trace metals at suitable environmental conditions e.g. water temperature, salinity, and sufficient light.

  • PDF

Development of New 4D Phantom Model in Respiratory Gated Volumetric Modulated Arc Therapy for Lung SBRT (폐암 SBRT에서 호흡동조 VMAT의 정확성 분석을 위한 새로운 4D 팬텀 모델 개발)

  • Yoon, KyoungJun;Kwak, JungWon;Cho, ByungChul;Song, SiYeol;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.100-109
    • /
    • 2014
  • In stereotactic body radiotherapy (SBRT), the accurate location of treatment sites should be guaranteed from the respiratory motions of patients. Lots of studies on this topic have been conducted. In this letter, a new verification method simulating the real respiratory motion of heterogenous treatment regions was proposed to investigate the accuracy of lung SBRT for Volumetric Modulated Arc Therapy. Based on the CT images of lung cancer patients, lung phantoms were fabricated to equip in $QUASAR^{TM}$ respiratory moving phantom using 3D printer. The phantom was bisected in order to measure 2D dose distributions by the insertion of EBT3 film. To ensure the dose calculation accuracy in heterogeneous condition, The homogeneous plastic phantom were also utilized. Two dose algorithms; Analytical Anisotropic Algorithm (AAA) and AcurosXB (AXB) were applied in plan dose calculation processes. In order to evaluate the accuracy of treatments under respiratory motion, we analyzed the gamma index between the plan dose and film dose measured under various moving conditions; static and moving target with or without gating. The CT number of GTV region was 78 HU for real patient and 92 HU for the homemade lung phantom. The gamma pass rates with 3%/3 mm criteria between the plan dose calculated by AAA algorithm and the film doses measured in heterogeneous lung phantom under gated and no gated beam delivery with respiratory motion were 88% and 78%. In static case, 95% of gamma pass rate was presented. In the all cases of homogeneous phantom, the gamma pass rates were more than 99%. Applied AcurosXB algorithm, for heterogeneous phantom, more than 98% and for homogeneous phantom, more than 99% of gamma pass rates were achieved. Since the respiratory amplitude was relatively small and the breath pattern had the longer exhale phase than inhale, the gamma pass rates in 3%/3 mm criteria didn't make any significant difference for various motion conditions. In this study, the new phantom model of 4D dose distribution verification using patient-specific lung phantoms moving in real breathing patterns was successfully implemented. It was also evaluated that the model provides the capability to verify dose distributions delivered in the more realistic condition and also the accuracy of dose calculation.