• Title/Summary/Keyword: 적층조형

Search Result 95, Processing Time 0.023 seconds

The effect of silica composite properties on DLP-stereolithography based 3D printing (실리카 복합소재의 물성에 따른 DLP 3D printing 적용 연구)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.54-60
    • /
    • 2019
  • Recently, various composite materials for additive manufacturing are interested to expand the application field of 3D printing. 3D printing technique was mainly developed using polymer, and ceramic materials for 3D printing are still in the early stage of research due to the requirement of high solid content and post treatment process. In this study, silica particles with various diameters were surface treated with silane coupling agent, and synthesized as silica composite with photopolymer to apply DLP 3D printing process. DLP is an additive manufacturing technology, which has high accuracy and applicability of various composite materials. The rheological behavior of silica composite was analyzed with various solid contents. After DLP 3D printing was performed using silica composites, the printing accuracy of the 3D printed specimen was less than about 3 % to compare with digital data and he bending strength was 34.3 MPa at the solid content of 80 wt%.

Hardness and Microstructure evolution of SUS630 Stainless steel Fabricated by Directed Energy Deposition (Direct energy deposition 공정으로 제조된 SUS630 스테인리스강 적층조형체의 경도 및 미세조직 연구)

  • Back, Seong Eun;Noh, Kyung-Ho;Park, Jin Yong;Cho, Yong Ju;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.220-225
    • /
    • 2018
  • The microstructure and mechanical characteristics of SUS630 specimens fabricated using the direct energy deposition (DED) process are investigated. In DED, several process parameters such as laser scan speed, chamber gas flow, powder carrier gas flow, and powder feed rate are kept fixed; the laser power is changed as 150 W, 180 W, and 210 W. As the laser power increases, the surface becomes smooth, the thickness uniformity improves, and the size and number of pores decreases. With the increase in laser power, the hardness deviation decreases and the average hardness increases. The microstructure of the material is columnar; pores are formed preferentially along the columnar interface. The lath-martensite phase governs the overall microstructure. The volumetric fraction of the retained austenite phase is measured to increase with the increase of laser input power.

The ornaments modeling applied of amethyst gems and design development of interior jewel modeling (자수정(Amethyst) 보석을 응용한 장신구 조형과 Interior Jewel Modeling의 디자인 개발)

  • Kim, Eun-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.170-177
    • /
    • 2012
  • Amethyst gems represents thermal effects of far-infrared emission, promotes the body's metabolism, and attracts attention as an eco-friendly interior material. In this paper, amethyst increase the value of jeweling by applying the characteristic purple motif, furthermore, I will intend to develop of design model. Metal crafting of brooch & necklace in the works performed based on the organic three-dimensional shape of the Rhino CAD Data. It was made possible through the precise laminated wax processing and then combining the amethyst. I researched the ornament modeling by applying the 'Golden Ratio', and suggesting utilizing method for interior jewel modeling, and also, is expected that this paper on the amethyst modeling design can contribute to the manufacturers' productivity.

Correlation between UV-dose and Shrinkage amounts of Post-curing Process for Precise Fabrication of Dental Model using DLP 3D Printer (DLP 공정을 이용한 정밀 치아모델 제작에서 UV 조사량과 후경화 수축률의 상관관계 분석)

  • Shin, Dong-Hun;Park, Young-Min;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2018
  • Nowadays, additive manufacturing (AM) technology is a promising process to fabricate complex shaped devices applied in medical and dental services. Among the AM processes, a DLP (digital light processing) type 3D printing process has some advantages, such as high precision, relatively low cost, etc. In this work, we propose a simple method to fabricate precise dental models using a DLP 3D printer. After 3D printing, a part is commonly post-cured using secondary UV-curing equipment for complete polymerization. However, some shrinkage occurs during the post-curing process, so we adaptively control the UV-exposure time on each layer for over- or under-curing to change the local shape-size of a part in the DLP process. From the results, the shrinkage amounts in the post-curing process vary due to the UV-dose in 3D printing. We believe that the proposed method can be utilized to fabricate dental models precisely, even with a change of the 3D CAD model.

Initial investigation of 3D free form fabrication Using Contour Crafting (적층조형설비(CC)을 이용한 3차원모형 제작에 대한 연구)

  • Kwon, Hong-Kyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.27-37
    • /
    • 2007
  • Preliminary investigation of CC process indicates that the process is feasible and has significant potential in construction automation approach of large objects. The process aims at automated construction of whole houses as well as sub-components. The potential of CC became evident from the initial investigations and experiments with various materials and geometries. Using this process, a single house or a colony of houses, each with possibly a different design, may be automatically constructed in a single run as shown on

    . Experiments with ceramics material show the versatility of the process relative to the use of a variety of fabrication materials. In addition to the use in rapid fabrication of large components, the process also has its niche in rapidly fabricating certain components for aerospace and automotive industries, where minimization of green machining is warranted.

  • PDF

A Study on Laminated Furniture for Organic Form and Utility of Fullscale Model (합판 적층재 가구의 유기적 조형을 위한 실물대 모델의 효율성 연구)

  • Kim, Ji-Geon
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.5
    • /
    • pp.319-327
    • /
    • 2008
  • As art of lamination by plywood got to be generally used, it became a suitable material for expressing live curves that were not able to be expressed on wood furniture made of plank and timber, as well as, openwork deep in curved space, heavy quality of material, and changing contour line-looking wave lines with different process angles. As an alternative, it would be good to build a full scale model, since it would provide practice in form-building and it would also provide a chance to correct the form. Less material can be used and reduce the cutting process by Properly trimming models made of soft formal structure such as Styrofoam Iso-pink and adhesive Styrofoam, and separating the layers and using them on shape cutting of plywood with the same thickness. And by attaching the model veneer that was used in shape cutting of the model and using it as a cutting guide, we can reduce the error of work and successively build the planned form. Since this study is about the need of a full scale model for a laminated wood model and an efficient process, this study concentrates more on process.

  • PDF

Investigation into development of post-processing system to improve geometrical conformity of VLM-$_{ST}$ parts for the detail shape (VLM-$_{ST}$ 제품의 국부형상 정밀도 향상을 위한 후가공 공정개발에 관한 연구)

  • 김효찬;안동규;이상호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.274-278
    • /
    • 2002
  • Surface finishing is still indispensable for most rapid prototyping (RP) processes because of the inherent stair-stepped surface and shrinkage of the parts. These problems can be minimized in the $VLM-_ST$ Process, because it uses expandable polystyrene foam sheets, each of which has a thickness of3.9 mm and a linear-interpolated side slope. The use of thick layers, however, limits the process capability of constructing fine details. This study focuses on the design of post-processing tool for fine details of $VLM-_ST$ parts and investigation of thermal characteristics during EPS foam cutting using the post-processing tool. To calculate the heat flux from the tool into the foam sheet, the tool was modeled as a heat source of radiation for finite element analysis. Results of the analysis agreed well with those of the experiment.

  • PDF

Fabrication of Photonic Crystal Fiber using a Capillary Layer Method (모세관 적층 방법에 의한 광자결정 광섬유의 제작)

  • Cho, Hyung-Su;Chung, Hae-Yang;Kim, Gil-Hwan;Koh, Dong-Yean;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • Photonic crystal fibers(PCFs) with silica cores within an away of air holes have unique properties. Broad band single-mode and the octave-spanning supercontinuum generation, impossible to achieve in classical fibers, can be realized. The design of PCFs is very flexible. There are two parameters to manipulate: air hole diameter, and lattice pitch. We introduced a fabrication process for control of the parameters to obtain endlessly single mode PCF, which is single mode in a large wavelength range, and highly nonlinear PCF. The numerical analysis and experiments are included.

A Study on Fabrication of Internally Colored Shape in Stereolithography Parts using Molten Ink Deposition Process (용융잉크 적층공정을 이용한 내부채색형상을 포함한 광조형물 제작에 관한 연구)

  • Park, Jong-Cheol;Park, Suk-Hee;Kang, Sang-Il;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.98-104
    • /
    • 2010
  • Rapid Prototypes with internally colored objects are convenient by visualizing. A rapid prototyping method has been developed to fabricate mono-colored or multi-colored objects. In this work, a new process was proposed that can fabricate internally visible colored 3D objects in stereolithography parts. The process consists of projection stereolithography process using transparent photocurable resin for outer shapes and molten ink deposition process using molten solid ink for internal shapes. In molten ink deposition process, molten solid ink could be deposited uniformly in a designed pattern. To make molten solid ink uniform over a designed region, parametric study through a patterning solid ink was performed. By laminating resin and solid ink in sequence, the process can make colored 3D objects in StereoLithography(SL) parts. The practicality and effectiveness of the proposed process were verified through fabrication of colored basic 3D objects in SL parts.

Effect of Laser Beam Diameter on the Microstructure and Hardness of 17-4 PH Stainless Steel Additively Manufactured by Direct Energy Deposition (레이저 빔 직경 변화에 따른 17-4 PH 스테인리스 강 DED 적층 조형체의 미세조직 및 경도 변화)

  • Kim, Woo Hyeok;Go, UiJun;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.314-319
    • /
    • 2022
  • The effect of the laser beam diameter on the microstructure and hardness of 17-4 PH stainless steel manufactured via the directed energy deposition process is investigated. The pore size and area fraction are much lower using a laser beam diameter of 1.0 mm compared with those observed using a laser beam diameter of 1.8 mm. Additionally, using a relatively larger beam diameter results in pores in the form of incomplete melting. Martensite and retained austenite are observed under both conditions. A smaller width of the weld track and overlapping area are observed in the sample fabricated with a 1.0 mm beam diameter. This difference appears to be mainly caused by the energy density based on the variation in the beam diameter. The sample prepared with a beam diameter of 1.0 mm had a higher hardness near the substrate than that prepared with a 1.8 mm beam diameter, which may be influenced by the degree of melt mixing between the 17-4 PH metal powder and carbon steel substrate.