• Title/Summary/Keyword: 적조생물

Search Result 181, Processing Time 0.032 seconds

Marine Environments and Production of Laver Farm at Aphae-do Based on Water Quality and Phytoplankton Community (수질환경과 식물플랑크톤 군집 변화에 의한 압해도 김 양식장의 해양환경과 생산)

  • Yoon, Yang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.159-167
    • /
    • 2014
  • In this study, I examined the water quality and phytoplankton community in aquaculture laver farm in the southwest part of Aphae-do, South Korea, based on the young leaf stage, middle leaf stage, and adult leaf stage of laver thallus from October, 2013 to January, 2014. It was observed that the Aphae laver farm, as located in shallow waters, was found to have a serious resuspsension of the surface sediments due to physical disturbance caused by winds and tidal mixing. Such a resuspension of surface sediments coupled with nutrients supply obstructs light penetration into the sea for its huge amount of total suspended matters. As a result for this reason, it was viewed toimpedthe growth of phytoplankton was impeded as it also competes with laver to absorb the same kinds of nutrients as laver does during the laver growth period in winter. Such elements of the marine environment in Aphae laver farm are in contrast with the environment of Japan, where nutrients including dissolved inorganic nitrogen, in particular, are insufficient to cause the recent laver bad harvest, discoloration and quality degradation while large diatoms, with their higher nutrients absorption efficiency than laver, generate winter red tide. In other words, an important factor to maintain the high laver production in the southern parts of West Sea of Korea was found to be the marine environment of its laver farms where large diatoms are prevented from growing due to nutrients supply and dense seston weights from resuspended matters by physical disturbances.

Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter (해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성)

  • 현정호;이홍금;권개경
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.210-224
    • /
    • 2003
  • Sulfate reduction is a microbiological process which occurs ubiquitously in anaerobic marine environment. Sulfate reducing bacteria play a significant role in anaerobic decomposition of organic matter and regeneration of inorganic nutrients which supports the primary production in the water column (i.e., benthic-pelagic coupling) and, in special case, could be responsible for the harmful algal bloom in the coastal marine environment. Summary of the sulfate reduction rates reported in various marine sedimentary environments revealed that supply of organic substrates and presence of various electron acceptors (i.e., $O_2$, NO$_{3}$$^{[-10]}$ , Fe(III) and Mn(IV), etc.) for other aerobic and anaerobic respiration directly affect the sulfate reduction rate and relative significance of sulfate reduction in organic matter mineralization. Significance of temperature, macrophytes and bioturbation is discussed as factors controlling supply of organic substrates and distribution of electron acceptors. Finally, we suggest studies on the anaerobic microbiological processes associated with biogeochemical element cycles in the coastal environments of Korea where massive operation of organic enriched fish cage farm, frequent occurrence of toxic algal bloom and hypoxia and conservation of tidal flat are of major environmental issues.

The characteristics of marine environment and phytoplankton community around southwestern waters for ichthyotoxic dinoflagellate Cochlodinium polykrikoides monitoring programme (남서해역의 유해성 적조생물 Cochlodinium polykrikoides Margalef 모니터링을 위한 환경특성 식물플랑크톤 군집 동태)

  • Cho Eun Seob;Choi Yong Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.177-184
    • /
    • 2005
  • This study was to determine the fluctuation in phytoplankton assemblages with regarding to environmental conditions and nutrients, which were surveyed around Mokpo waters in the southwestern waters, Korea. Sampling was carried out on the Mokpo, Sinan, and Wando coasts from March to November 2003. The maximum sea surface temperature was recorded in August, and it ranged around $25^{\circ}C$ regardless of sampling sites. However, salinity in Mokpo waters showed a great variation, which ranged from 5-30 psu and recoded the minimum of 5 psu in July and the maximum of 30 psu in November. Moreover, in Mokpo waters, the chlorophyll a and SS concentration of the surface layer were also the highest values of $20\;{\mu}g\;l^{-1}\;and\;40\;{\mu}g\;l^{-1}$, respectively than those of Sinan and Wando waters. The concentrations of $NH_4-N,\;NO_2-N,\;NO_3-N,\;and\;PO_4-P$ were also he highest values of $0.018\;{\mu}mol\;^l{-1},\;0.062\;{\mu}mol\;l^{-1},\;1.2\;{\mu}mol\;l^{-1}\;and\;0.078\;{\mu}mol\;l^{-1}$, respectively in Morpo waters than those of Sinan and Wando waters. During the period of this study, the majority of the taxa were diatoms; Thalassiosira rotula, Rhizosolenia setigera, Prorocentrum minimum, Chaetoceros curvisetus, Leptocylindrus danicus, Pseudonitzschia pungens, and Chaetoceros spp. were detected in the dominant species of phytoplankton. The dinoflagellates were relatively abundant during the summer season in Wando waters, which attained an abundance of $10-20\%$. In Mokpo waters, DIN/DIP was the highest value of 700 in March, whereas the lowest was shown in Wando waters. However, DIN/DIP value in summer at Wando waters was extremely reversed, which appeared to be associated with the development of dinoflagellates. On the bais of factor analysis using SYSAT 6.0, nutrient showed somewhat correlation with chlorophyll a. Consequently, the process of discharge of fresh water in Mokpo waters plays an important role in extremely fluctuation in nutrients and conditions. Although Wando waters maintains a lack of nutrients, it should be influenced by different water current and may be associated with a concentration of nutrients.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Seasonal Distributional Characteristics of Phytoplankton Adjacent to the Oyster Farming Area of Hansan-Geoje Island (한산도-거제도 동부 굴 양식장주변에서 식물플랑크톤의 계절적 분포특성)

  • Lim, Young Kyun;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.647-658
    • /
    • 2018
  • The aim of this study is to investigate the seasonal changes of phytoplankton communities based on the environmental changes in a dense oyster farming area (Hansan-Geoje Island) from June to December 2016. The water temperature varied from $14^{\circ}C$ to $28.8^{\circ}C$ and its salinity ranged from 29.4 to 34.2 psu. Nitrate+nitrite was kept at c.a. $3.0{\mu}M$ on the surface layer from June to July, below the concentration limit in August and early September, and then gradually increased from late September. Ammonia was high on July 20 and August 10, and its seasonal characteristics were not clear. Phosphate ranged from 0.01 to $0.7{\mu}M$ on the surface layer, and its seasonal changes were similar to those of nitrate+nitrite. Mean silicate concentrations were $10.7{\mu}M$ on the surface and $15.7{\mu}M$ in the bottom layer, and it was not acted as a limiting factor for the growth of phytoplankton. Among the phytoplankton community, Bacillariophyceae, Dinophyceae and Cryptophyceae was 61.2%, 22.5%, and 13.6%, respectively. In late June, dinoflagellate Prorocentrum donghaiense was dominant in the outer waters(St. T1), later on, Cryptomonas spp. and Chaetoceros spp. were dominant, respectively. From late September to October, diatoms Pseudo-nitzschia spp. and Chaetoceros spp. were stimulated under non-stratified condition after the typhoon. In December, A. sanguinea was found to be $1.7{\times}10^5cells\;L^{-1}$. Seasonally, relative high phytoplankton biomass may be favorable to maintain high production of filter feeder oyster in the dense oyster farming areas of Hansan and Geoje Island.

Recovery and Utilization of Proteins and Lipids from Washing Wastewater in Marine Manufacture by Isoelectric Point Precipitation Method 1. The Coagulation Treatment for Washing Wastewatfr of Minced Mackerel Meat (수산가공공장 폐액의 등전점 침전처리에 의한 유용성분 재회수 이용 1. 고등어 육 고기풀 제조시 발생되는 폐액의 처리장치 개발)

  • 서재수;조순영
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • A lot of water soluble proteins and lipids are released from minced mackerel meat and lost into the washing waste during the leaching process of Kamaboko or surimi manufacture. The removed proteins and lipids are not only an edible things but also a big burden for treating the wastewater. In order to recover the proteins from the effluent and to use as food stuff, the "pH-shifting" treatment, a modified isoelectric point precipitation method, was tried. This method is based on a myogen-aggregation phenomenon, which occurs when a solution of sarcoplasmic proteins is acidified or alkalified beyond the critical pH zone of 2∼3 or 12∼13 respectively and then neutralized. The maximum amount of precipitation was obtained by shifting the pH of the wastewater from original pH to isoelectric point (pH 4) or alkali pH 12 and then changing to neutral pH. The precipitates were easily collected by filteration or centrifuging at 10,000rpm. The oils which were only floating in the washing wastewater are easily recovered by seperating with oil separator after pouring. The recovered proteins were slightly denaturated during this pH shifting precipitation process, while the composition of amino acids was good balance as a food.

  • PDF

Real-time Micro-algae Flocculation Analysis Method Based on Lens-free Shadow Imaging Technique (LSIT) (렌즈프리 그림자 이미징 기술을 이용한 실시간 미세조류 응집현상 분석법)

  • Seo, Dongmin;Oh, Sangwoo;Dong, Dandan;Lee, Jae Woo;Seo, Sungkyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • Micro-algae, one of the biological resources for alternative energy, has been heavily studied. Among various methods to analyze the status of the micro-algae including counting, screening, and flocculation, the flocculation approach has been widely accepted in many critical applications such as red tide removal study or microalgae resource study. To characterize the flocculation status of the micro-alga. A traditional optical modality, i.e., photospectrometry, measuring the optical density of the flocs has been frequently employed. While this traditional optical method needs shorter time than the counting method in flocculation status analysis, it has relatively lower detection accuracy. To address this issue, a novel real-time micro-algae flocculation analysis method based on the lens-free shadow imaging technique (LSIT) is introduced. Both single cell detection and floc detection are simultaneously available with a proposed lens-free shadow image, confirmed by comparing the results with optical microscope images. And three shadow parameters, e.g., number of flocs, effective area of flocs, and maximum size of floc, enabling quantification of the flocculation phenomenon of micro-alga, are firstly demonstrated in this article. The efficacy of each shadow parameter is verified with the real-time flocculation monitoring experiments using custom developed cohesive agents.

The Physiochemical Characteristics of Seawater and Sediment of Marine Shellfish Farm in Jindong Bay (진동만 패류양식해역의 환경특성)

  • Jeong, Woo-Geon;Cho, Sang-Man
    • The Korean Journal of Malacology
    • /
    • v.19 no.2
    • /
    • pp.161-169
    • /
    • 2003
  • Seawater and sediment quality analysed was calculated to examinate the present environmental characteristics and pollution load was also calculated to evaluate the effect of farming area on the coastal environment. The measurements for seawater quality demonstrate the coastal environment has relatively eutrophicated with significantly decreased DO (0.2-8.5 mg/l) and elevated COD (9.6-31.2 mg/l) in summer. It was also evident that the water quality in Jindong Bay has been influenced by residues tide from Masan Bay with high metal concentration in August of 2002. Annual total pollution load (land and farm-driven) was estimated at 37,316 ton (SS) /yr: 9,809 ton/yr (26.3%) of land-driven load, 23,576 ton/yr (63.2%) of coastal sedimentation and 3,932 ton/yr (10.5%) of feces of cultural organisms. When all ark shell seedling farms are permitted species conversion to ascidian farm, the pollution load would increase by 196%, which may be another source for accelerating the eutrophication of the environment in Jindong Bay.

  • PDF

Distribution of Marine Bacteria and Coliform Groups in Puksin Bay, Korea (북신만의 대장균군 및 해양세균의 분포)

  • CHOI Jong-Duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.202-208
    • /
    • 1995
  • Puksin Bay located in the northwestern pan of Tongyeong, Korea has been contaminated by municipal wastewaters. In Puksin Bay, red tides have occured almost every year since the early 1980's. This experiment was carried out two times in a month in the winter in 1990, the summer' 1991, and the winter in 1994 so as to clarify the distribution marine bacteria and coliform groups in Puksin Bay. The water quality of Puksin Bay was not only move polluted than that of any other costal area around Tongyeong, but also its water quality was investigated to keep going bad. Viable cell counts in Puksin Bay were $4.9\times10^3/ml$ in 1990's winter, $3.6\times10^6/ml$ in 1991's summer, and $2.1\times10^4/ml$ in 1994's winter. The variation of seasonal total and fecal coliform MPN/100ml in Puksin Bay were $6.7\times10^2\;and\;2.6\times10^2$ in 1990's winter, $1.5\times10^4$ and $5.4\times10^3$ in 1991's summer, and $1.5\times10^3$ and $5.6\times10^2$ in 1994's winter, respectively. The changes of stational total coliform MPN/100m1 from station 1 to station 8 in Puksin Bay were 95,000, 1600, 1,000, 182, 151, 94, 43 and 13 in winter, and 110,000, 29,000, 2,400, 4,100, 1,700, 1,700, 810 and 150 in 1991's summer, and 3,381, 1928, 1582, 256, 161, 59 and 23 in 1994's winter. During the study period, the number of viable cell was ranged from $10^4\;to\;10^7/ml$ and 307 bacteria strains were isolated from Puksin Bay. The dominant species were Acinetobacter spp. 86 $(28.3\%)$, Pseudomonas spp. 51 $(16.6\%)$, Flavobacterium spp. 41 $(13.4\%)$, Escherichia coli 36 $(11.7\%)$, and Vibrio spp. 27$(8.8\%)$. The results obtained in this study indicate that this bay is getting to contaminate far more with municipal wastewaters and cultivation of the shellfish and finfish in this bay is not proper. When municiple wastewaters keep flowing into this bay, any other coastal area around Tongyeong may be contaminated.

  • PDF

An Initiative Study on Relationship between Algal Blooms and Asian Dust for Regulation of Algal Blooms (조류 성장 억제를 위한 녹조 및 적조 발생과 황사의 상관관계 초기적 연구)

  • Kim, Tai-Jin;Jeong, Jaechil;Seo, Rabeol;Kim, Hyung Moh;Kim, Dae Geun;Chun, Youngsin;Park, Soon-Ung;Yi, Sehyoon;Park, Jun Jo;Lee, Jin Ha;Lee, Jay J.;Lee, Eun Ju
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • Although the problems of the algal blooms have been world-widely observed in freshwater, estuary, and marine throughout the year, it is not yet certain what are the basic causes of such blooms. Consequently, it is very difficult to predict when and where algal blooms occur. The constituents of the Asian dust are in a good agreement with the elements required for the algal growth, which suggests some possible relationship between the algal blooms and the Asian dust. There have been frequently algal blooms in drinking water from rivers or lakes. However, there is no any algal blooms in upwelling waters where the Asian dust cannot penetrate into the soil due to its relatively weak settling velocity (size of particles, $4.5{\pm}1.5{\mu}m$), which implies the possible close relationship of the Asian dust with algal blooms. The present initiative study is thus intended firstly in Korea to illustrate such a relationship by reviewing typical previous studies along with 12 years of weekly iron profiles (2001~2012) and two slant culture experiments with the dissolved Asian dust. The result showed bacterial suspected colonies in the slant culture experiment that are qualitatively in a good agreement with the recent Japanese studies. Since the diatoms require cheap energy (8%) compared to other phytoplankton (100%) to synthesize their cell walls by silicate, the present results can be used to predict algal blooms by diatoms if the concentrations of iron and silicate are available during spring and fall. It can be postulated that the algal blooms occur only if the environmental factors such as light, nutrients, calm water surface layer, temperature, and pH are simultaneously satisfied with the requirements of the micronutrients of mineral ions supplied by the Asian dust as enzymatic cofactors for the rapid bio-synthesis of the macromolecules during algal blooms. Simple eco-friendly methods to regulate the algal blooms are suggested for the initial stage of blooming with limited area: 1) to cover up the water surface with black curtain and inhibit photosynthesis during the day time, 2) to blow air (20.9%) or pure oxygen into the bottom of the water and inhibit rubisco for carbon uptake and nitrate reductase for nitrogen uptake activities in algal growth during the night, 3) to eliminate the resting spores or cysts by suction of bottom sediments as deep as 5 cm to prevent the next year germinations.