• Title/Summary/Keyword: 적응PD제어

Search Result 34, Processing Time 0.031 seconds

Study of Adaptive Learning Control for Robot-Manipulator (로봇 매니퓰레이터의 적응학습제어에 관한 연구)

  • 최병현;국태용;최혁렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.396-400
    • /
    • 1996
  • It is prerequisite to apply dynamics controller to control robot manipulator required to perform fast and Precise motion. In this Paper, we Propose an adaptive 3earning control method for the dynamic control of a robot manipulator. The proposed control scheme is made up of PD controller in the feedback loop and the adaptive learning controller in the feedforward loop. This control scheme has the ability to estimate uncertain dynamic parameters included intrinsically in the system and to achieve the desired performance without the nasty matrix operation. The proposed method is applied to a SCARA robot and experimentally verified.

  • PDF

On-line Adaptive Control for Robot Manupulators (로봇 매니퓰레이터의 실시간 적응 제어)

  • Lee, Min-Jung;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2729-2731
    • /
    • 2000
  • In this paper, we propose an adaptive controller using RBFN(radial basis function network) for robot manipulators. The structure of the proposed controller consists of a RBFN and a fixed gain PD controller. On the basis of the Lyapunov stability theorem, we guarantee the UUB (uniformly ultimately boundedness) for the total system. And the learning law of RBFN is established by the Lyapunov method. Finally, we apply the proposed controller to tracking control for the 2 link SCARA type robot manipulator.

  • PDF

Position Control For A DC Servo Motor Using Adaptive Fuzzy Algorithm (적응퍼지 알고리즘을 이용한 DC서보 전동기의 위치제어)

  • Ji, Sung-Hyon;Son, Jae-Hyun;Jeon, Byong-Tae;Lim, Jong-Kwang;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.485-488
    • /
    • 1993
  • Fuzzy Logic Control immitating human decision making process is a novel control strategy based on expert's experience and knowledge and many process designers are developing its applications. But it is difficult to obtain a set of ruler from human operators. And there is a limitation on adjusting to environmental changes. In this paper, we proposed adaptive fuzzy algorithm to overcome these difficulties using weights added to the rules. To verify the validity of this control strategy, we have implemented this algorithm for a DC servo motor with PD-type fuzzy controller.

  • PDF

Increasing the SLAM performance by integrating the grid-topology based hybrid map and the adaptive control method (격자위상혼합지도방식과 적응제어 알고리즘을 이용한 SLAM 성능 향상)

  • Kim, Soo-Hyun;Yang, Tae-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1605-1614
    • /
    • 2009
  • The technique of simultaneous localization and mapping is the most important research topic in mobile robotics. In the process of building a map in its available memory, the robot memorizes environmental information on the plane of grid or topology. Several approaches about this technique have been presented so far, but most of them use mapping technique as either grid-based map or topology-based map. In this paper we propose a frame of solving the SLAM problem of linking map covering, map building, localizing, path finding and obstacle avoiding in an automatic way. Some algorithms integrating grid and topology map are considered and this make the SLAM performance faster and more stable. The proposed scheme uses an occupancy grid map in representing the environment and then formulate topological information in path finding by A${\ast}$ algorithm. The mapping process is shown and the shortest path is decided on grid based map. Then topological information such as direction, distance is calculated on simulator program then transmitted to robot hardware devices. The localization process and the dynamic obstacle avoidance can be accomplished by topological information on grid map. While mapping and moving, pose of the robot is adjusted for correct localization by implementing additional pixel based image layer and tracking some features. A laser range finer and electronic compass systems are implemented on the mobile robot and DC geared motor wheels are individually controlled by the adaptive PD control method. Simulations and experimental results show its performance and efficiency of the proposed scheme are increased.