최근 대부분의 대규모 기업정보시스템은 기능재활용성, 다종의 시스템 리소스, 다중 플랫폼 등을 지원하기 위해 다층구조의 미들웨어 또는 프레임워크를 기반으로 하고 있다. 그러나 이러한 다층 및 다중 플랫폼 분산 구조는 미들웨어간의 컴포넌트 및 메타정보에 대한 상호운용성 문제를 제기한다. 본 논문은 추상화 프로그래밍 스타일과 XML-SOAP에 기반한 컴포넌트 보존 방법을 통해서, 다종의 리소스를 지원하고 플랫폼에 독립적인 컴포넌트 기반 개발을 가능케 하는 객체지향프레임워크 SOAF (Simple Object Application Framework)을 제시하고 그 아키텍쳐 및 주요 특징에 대해 소개한다.
과거에는 선박을 운용하기 위해서 많은 인원이 필요하였으나 최근 들어 선박 운용에 필요한 인원이 줄어들고 있으며, 더 나아가 자율적으로 운항하는 선박을 만들기 위한 연구가 활발히 수행되고 있다. 자율 운항 선박을 구성하는 여러 요소 중 인간의 시각을 대체하기 위한 자율 인지 시스템은 가장 선행되어야 하는 연구 분야 중 하나이다. RADAR (RAdio Detection And Ranging) 및 AIS (Automatic Identification System) 등의 전통적인 인지 센서를 활용한 연구가 진행 중이지만 사각지대나 탐지 주기 등의 한계가 있다. 따라서 본 연구에서는 다중 카메라 (광학, 열상, 파노라마)를 이용하여 전통적인 인지 센서의 한계를 보완하는 새로운 인지 시스템을 고안하였으며, 이를 기반으로 해상 장애물을 추적하여 동적 운동 정보를 얻었다. 먼저 실해역에서 수집한 이미지를 바탕으로 해상 장애물 탐지를 위한 데이터를 구성하고, 딥 러닝 기반의 탐지 모델을 학습시켰다. 탐지 모델을 이용하여 탐지한 결과는 직접 설계한 칼만 필터 기반의 적응형 추적 필터를 통과시켜 해상 장애물의운동 정보 (궤적, 속력, 방향)를 계산하는데 활용되었다. 또한 본 연구는 카메라를 센서로 활용했을 때의 한계를 보완하기 위하여 동 시간대에 다중 카메라에서 추적한 각각의 정보를 융합하였다. 그 결과 단일 카메라를 활용하는 경우, RADAR의 오차 범위 이내에 추적 결과가 수렴하는 양상을 보였으며, 다중 카메라를 활용하는 경우에는 단일 카메라보다 정확한 추적이 가능함을 확인하였다.
최근 자율 주행 자동차와 지능형 CCTV에 대한 관심이 높아지면서 효율적인 객체 검출의 중요성은 필수적인 요소이다. 본 논문의 기반이 되는 DPM(Deformable Part Models)은 객체에 대한 변형 가능한 부분의 혼합을 사용하여 가변적인 객체를 나타낼 수 있는 대표적인 검출기로 다양한 분야에서 많이 연구 되고 있다. 객체 모델의 파트 모양과 구성을 잡아내는 기법으로 높은 검출 성능을 보여주지만 복잡한 알고리즘으로 인해 실제 어플리케이션에서 사용하기에는 한계가 있다. 이를 개선하기 위해 본 논문에서는 DPM에서 많은 연산을 필요로 하는 이미지 특징 피라미드(feature pyramid)를 구성하는 과정 대신, 특정 스케일에서 구해진 소수의 특징(feature) 맵에 적응적인 쌍선형(bilinear) 보간법을 이용하여 이미지 특징 피라미드를 재구성해 연산 속도를 줄이는 방법을 제안한다. 모의실험 결과, 제안된 방식의 DPM은 기존 DPM 방식 대비 검출 성능은 2.82%가 낮아졌지만 평균 연산 시간 10%를 향상시킴을 알 수 있었다.
오늘날 정보 기술 및 지능형 시스템에서는 분산 데이터베이스로부터 패턴들을 찾고 규칙들을 추출하기 위해 데이터 마이닝 기술을 사용한다. 분산환경에서 데이터 마이닝 기술을 이용해 추출된 규칙들은 동적인 중복, 적응형 부하 균형 및 기타 기술들에서 활용될 수 있다. 그러나 대량의 데이터 전송은 에러를 야기하며 신뢰할 수 없는 결과를 초래할 수 있다. 이 논문은 이동 에이전트를 사용하여 동적 그룹 바인딩을 기반으로 한 인텔리전트 분산 플랫폼을 제안한다. 그룹서비스를 통해 효율적인 객체 검색을 위한 분류 알고리즘을 구현한다. 지능형 모델은 동적 중복을 위해 추출된 규칙을 사용한다. 데이터 마이닝 에이전트와 데이터 압축 에이전트는 각각 서비스 노드 데이터베이스로부터 규칙을 추출하여 데이터를 압축한다. 제안한 알고리즘은 데이터를 전송하기 전에 neuro-fuzzy 분류기를 사용하여 빈도가 적은 데이터 ???V을 합하는 전처리 과정을 수행한다. 객체그룹 분류, 서비스 노드 데이터베이스 마이닝, 데이터 압축 및 규칙 추출에 대한 시뮬레이션을 수행했다. 효율적인 데이터 압축 및 신뢰성 있는 규칙 추출에 대한 실험 결과 제안한 알고리즘이 다른 방법들과 비교해 이러한 관점에서 성능이 우수함을 나타내었다.
워크플로우 시스템은 한 조직체 내에서 운용되는 정보와 제어의 흐름을 효과적으로 자동화 해주는 역할을 담당해야 한다. 그러나 기업내의 실제업무에는 많은 변수들이 존재하고 다양하게 변화하고 있다. 또한 시스템이 분산 컴퓨팅화되어 가기 때문에 그 흐름을 추적, 관리의 차원을 넘어서 업무들의 최적화, 통합화는 물론 분산된 시스템내 서버들 관리까지도 개입을 해야한다. 또한 특정작업의 과부하 또는 병목현상을 운용자가 개입하여 방지하고 개선함으로서 전체 작업의 효율을 향상시켜야 한다. 이에 운용관리 툴도 독립 서버로 존재하는 것보다 여러 개의 서버로 분산시켜 구축함으로써 수행 객체들을 효율적으로 통제할 수 있다. 또한, 시스템을 구성하고 있는 서버들의 관리도 중앙에서 모든 것을 통제하는 것보다 각각의 분산된 운용 서버들이 각각 관리함으로써 신뢰성, 안정성의 한계를 극복할 수 있다. 국제표준기구 역할을 하고 있는 WfMC(Workflow Management Coalision)에서 제시한 표준 모델을 근거로 각각의 인터페이스 규약에 따라 시스템을 개발하는데 있어 실질적인 기업의 업무에 적용되기에는 턱없이 부족한 점들을 이 논문을 통해 지적한다. 또한 좀 더 빠르게 변화하는 사회에 적격인 적응형(Adaptive) 워크플로우 관리 시스템의 특성을 지니도록 했다. 그리고 데이터베이스의 트랜잭션의 개념을 워크플로우 레벨에서 업무들의 수행시 에러나 장애시 복구처리 메커니즘으로 설계하고 구현을 하였다.
주어진 배경 이미지로부터 전경 객체를 분리하는 것을 목표로 하는 배경 차분화 기법에 관한 많은 연구가 있어 왔다. 최근에 발표된 몇 가지 통계 기반 배경 차분화 기법들은 동적인 환경에서 동작할 수 있을 정도로 안정된 성능을 보이는 것으로 보고되고 있다. 그러나 이들 기법은 일반적으로 매우 많은 계산 자원을 요구하며, 객체의 명확한 윤곽을 획득하는데 있어서는 아직 어려움이 있다. 본 논문에서는 점진적으로 변화하는 배경을 모델링하기 위해 복잡한 통계 기법을 적용하는 대신 간단한 이동-평균 기법을 사용한다. 또한 픽셀별로 할당되는 다중의 임계치 대신 유전자 학습에 의해 최적화되는 하나의 전역적 임계치를 사용한다. 유전자 학습을 위해 새로운 적합도 함수를 정의하여 학습하고 이를 이용하여 이미지의 분할 결과들을 평가한다. 본 논문의 시스템은 웹 카메라가 장착된 개인용 컴퓨터에서 구현하였으며, 실사 이미지들에 대한 실험 결과에 의하면 기존의 가우시안 믹스쳐 방식보다 우수한 성능을 보이는 것으로 나타났다.
디지털 트윈은 현실세계의 물리적 객체를 디지털 세계의 가상객체로 모사하고 시뮬레이션을 통해 미래에 발생 가능한 현상을 예측함으로써, 현실세계의 문제를 해결 또는 최적화하기 위해 고안된 M&S(Modeling and Simulation) 기술이다. 디지털 트윈은 지금까지 도시, 산업 시설 등 대규모 환경에서 특정 목적을 달성하기 위해 수집된 다양한 데이터 기반으로 정교하게 설계되고 활용되어 왔다. 이러한 디지털 트윈 기술을 실생활에 적용하고 사용자 맞춤형 서비스 기술로 확장하기 위해서는 개인정보 보호, 시뮬레이션의 개인화 등 실질적이지만 민감한 문제를 해결해야 한다. 이러한 문제를 해결하기 위해 본 논문에서는 개인화 디지털 트윈을 위한 연합학습 기반의 클라이언트 훈련 가속 방식(FACTS)을 제안한다. 기본적인 접근 방식은 클러스터 기반의 적응형 연합학습 훈련 절차를 활용해 개인정보를 보호하면서 동시에 사용자와 유사한 훈련 모델을 선택하고 훈련을 가속하는 것이다. 다양한 통계적으로 이질적인 조건의 실험 결과 FACTS는 기존의 FL 방식에 비해 훈련 속도 및 자원 효율성 측면에서 우수한 것으로 나타난다.
본 논문은 카메라 영상 정보와 기울기 센서 정보를 통합한 바이모달 응급상황 인식방법을 제안한다. 제안된 방법은 어느 한 센서가 오작동 하거나 사용자가 착용형 기울기 센서를 착용하지 않거나, 영상 획득의 어려움이 있는 욕실과 같은 곳에 있는 경우에도 응급 상황을 감지하여 센서 간에 상호 협력과 보완을 함으로써 응급 상황을 인식할 수 있다. 본 논문에서는 HMM 학습 및 인식을 통해 걷는 동작, 바닥에 앉는 동작, 소파에 앉는 동작, 눕는 동작, 기절 동작을 판단할 수 있도록 하였다. 영상의 특징 벡터와 기울기 센서의 특징 벡터를 결합하여 학습하고 인식했을 때, 인식률의 향상을 가져올 수 있었다. 또한 다양한 조명의 변화에도 적응적 배경 모델을 통해 움직이는 객체를 강건하게 검출할 수 있어서 높은 인식률을 유지할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.