유전자 알고리즘은 다윈의 자연선택설과 유전자의 진화 개념을 이용한 적응 탐색 알고리즘으로 적용하고자 하는 문제의 매개 변수를 유전자와 비슷한 데이터 구조로 부호화하고, 유전 연산자를 이용하여 문제의 해답을 찾는 알고리즘이다. 최근 유전자 알고리즘은 이러한 복수개의 목적 함수를 최적화 하기 위한 다중 최적화 문제를 위한 최적화 기술로서의 관심이 크게 다루어지고 있으며 전송 문제, 생산 공정 문제 계획 등과 같은 다목적 함수를 다루는 많은 응용 부분에 대해 적용되고 있다. 본 논문에서는 기본적인 다중 목적 함수용 예와 Gen과 Kim이 제안한 네트워크 신뢰도를 고려한 연결 비용과 메시지 지연을 고려한 이중 구속 통신망 설계 문제를 가지고 가중치 합과 여러 가지 파레토 방법들을 비교하고 연구 검토 하고자 한다.
본 논문의 목적은 퍼지 엔트로피를 이용하여 비선형신호를 예측하는 것이다. 이 방법은 분할된 여러 부 공간(subspace)에 대해 입력 데이터로부터 퍼지 엔트로피를 이용하여 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 바람직한 규칙베이스를 구성하도록 한 것이다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 역전파 알고리즘에 의해 적응되어진다. 또한 매개변수의 수를 줄이기 위하여 제어규칙의 결론부의 출력값은 신경망의 가중치로 구성하였다. 결국 퍼지 신경망의 복잡도를 줄일 수 있다. Mackey-Glass 시계열의 예측에 대한 컴퓨터 시뮬레이션을 통하여 본 논문에서 제안한 방법의 효율성을 입증하고, 제안된 방법을 EEG 생리신호 분석에 이용될 수 있다.
파이프라인과 슈퍼스칼라 방식이 일반화된 시스템 구조 하에서, 분기 명령어는 시스템 전체적인 성능에 중요한 영향을 미친다. 특히 분기 예측이 실패했을 경우, 잘못된 분기 예측으로 인한 페널티가 발생한다는 점에서 분기 예측의 정확도에 대한 중요성은 크다고 할 수 있다. 본 논문에서는 분기 예측의 정확도를 높이기 위해서, 분기 예측과 관련된 신경망을 구축하여 이를 통해 분기 예측에 필요한 각 요소별 가중치의 변화를 분석하고, 이를 분기 예측에 새롭게 반영하고자 한다. 본 논문에서는 이를 위해 실행 구동 방식의 시뮬레이터인 SimpleScalar를 통하여 모의 실험을 수행하였으며, 실험 결과 본 논문에서 제시한 새로운 기법이 기존의 일반적인 이단계 적응형 분기 예측 기법이나 gshare 기법에 비하여 더 우수한 결과를 보였다.
분산 Job Scheduling 문제에서 Makespan 은 항상 타 성능지표를 대표하는 단일 목표치 (Objective)가 되기 어려운 측면이 있다. 그러나 기존의 Job Scheduler 관련 제안들은 Makespan 만을 단일 목표치로 최적화 시킴으로써, 성능적 우수성을 입증하는 한계점이 있었다. 그러므로 본고에서는 Makespan 및 Throughput 을 동시에 최소화하여 개별 가중치로 정량화될 수 있는 다양한 성능 요구사항에 적합한 복수 대안 (Scheduling Alternatives)들을 제공할 수 있는 GA 기반 스케줄링 기법에 대해 제안한다.
최근까지 단일 영상이나 동영상을 영역화하는 기법들은 다양하게 제시되어 왔으나, 유사한 장면에 대한 여러 장의 영상을 동시에 영역화하는 기법은 많지 않았다. 본 논문에서는 한 장소에서 연속적으로 촬영하였거나 전경 물체가 유사한 여러 영상들을 동일 장면 영상으로 정의하고, 이런 동일 장면 영상들을 적은 양의 사용자 입력을 통해 효과적으로 영역화하는 기법을 제안한다. 구체적으로, 사용자가 최초의 영상 한 장을 직접 영역화한 후, 그 영상의 영역화 결과와 영상의 특성을 토대로 다중 단계 신호를 적응적 가중치를 주어서 인접 영상으로 전파하고, 이를 통해 제안하는 기법은 인접 영상을 반복적으로 영역화한다. 영역화는 마르코프 랜덤 장에서의 에너지 최소화를 통해 이루어지는데, 전파되는 신호는 각 픽셀에 대한 에너지를 정의하는 바탕이 되며, 픽셀, 픽셀 패치, 그리고 영상 전체로부터 비롯되었는가에 따라 낮은 단계, 중간 단계, 그리고 높은 단계의 신호로 지칭된다. 또한 에너지 최소화 틀 안에서 전파된 신호를 통해 정의되는 에너지 역시 낮은 단계, 중간 단계, 그리고 높은 단계의 세 단계로 정의한다. 이런 과정을 통해 전파된 신호를 최대한 다양하게 활용하고, 이를 통해 다양한 영상에 영역화 결과가 일관되게 유지된다. 다양한 동일 장면 영상들에 제안하는 기법을 적용하여 성능을 평가하고, 픽셀 패치를 바탕으로 하는 중간 단계 신호만을 이용한 결과와 제안하는 다중 신호를 적용하는 기법의 결과를 비교한다.
고속 정밀 파면측정 기술은 적응광학 시스템의 성능향상에 중요한 요소이다. 본 논문에서는 적응광학시스템의 하트만 센서로부터 파면정보를 고속으로 측정할 수 있는 알고리즘을 제안하였다. 또한 변형거울 및 기울기거울을 외부유입 노이즈에 강하게 제어하기 위하여 차분 신호를 구성하는 전기적인 제어 장치들을 개발하였다. 무게중심법에 기초한 파면측정 기술은 하트만 센서를 이용한 파면측정 알고리즘으로 가장 널리 사용 되어오고 있으며 좋은 측정결과를 제공해오고 있다. 본 논문에서는 하트만 센서를 이용한 점 영상에서 실제 각 점의 무게 중심위치를 예측하는 예측 가중치가 결합된 무게중심 법을 제안하였다. 제안된 고속 파면측정 알고리즘은 실험을 통해 고속의 정밀한 측정 결과를 제공함을 확인하였고 결과를 비교 분석하였다.
본 논문에서는 water flow model의 개념을 적용한 문서영상 이진화 방법의 속도를 개선하는 방법을 제안한다. 제안한 방법은 문서영상에서 문자 주위를 관심영역(region of interest: ROI)으로 추출하고 3차원 영상지형에서 물이 뿌려지는 영역을 관심영역 이내로 제한한다. 국부 계곡에 누적되는 물의 양은 계곡의 깊이와 경사를 이용하여 자동으로 결정된다. 그리고 계곡의 최저 지점뿐만 아니라 그 주위에도 가중치를 부여하여 물을 누적함으로써 관심영역에 해당하는 영상지형에 물을 붓는 과정을 한번만 수행하여 충분한 양의 물이 계곡에 채워지도록 한다. 계곡에 형성된 연못의 깊이는 배경과 문자의 밝기 차에 따라 다양하므로 연못의 깊이를 기준으로 문자 분리를 위한 임계치를 적응적으로 결정한다. 실제 문서영상에 대한 실험에서 제안한 방법의 수행속도가 water flow model에 기반 한 이진화 방법과 비교하여 월등히 향상되었으며 이진화 품질도 매우 우수함을 보였다.
본 논문에서는 효과적으로 VPI 환자 음성을 인식하기 위해 DNN-HMM 하이브리드 구조의 음성 인식 시스템을 구축하고 기존의 GMM-HMM 기반의 음성 인식 시스템과의 성능을 비교한다. 정상인의 깨끗한 음성 데이터베이스를 이용하여 초기 모델을 학습하고 정상인의 VPI 모의 음성을 이용하여 VPI 환자 음성에 대한 화자 인식을 위한 기본 모델을 생성한다. VPI 환자의 화자 적응 시에는 DNN의 각 층 별 가중치 행렬을 부분적으로 학습하여 성능을 관찰한 결과 GMM-HMM 인식기보다 높은 성능을 나타냈다. 성능 향상을 위해 DNN 모델 적응을 적용하고 LIN 기반의 DNN 모델 적용 결과 평균 2.35%의 인식률 향상을 나타냈다. 또한 소량의 데이터를 사용했을 때 GMM-HMM 기반 음성인식 기법에 비해 DNN-HMM 기반 음성 인식 기법이 향상된 VPI 음성 인식 성능을 보인다.
본 논문에서는 DS-CDMA 기반의 W-CDMA 상향링크 시스템에서 타사용자 간섭 및 다중 경로 간섭 신호를 효율적으로 제거할 수 있는 Multistage Adaptive Partial PIC를 설계하고 모의실험을 통해 그 성능을 분석하였다. 적응 방식은 연판정기의 가중치를 수신 신호에 따라 제어하는 방식이기 때문에 연판정의 효과를 극대화시킬 수 있고 더욱 정밀한 간섭 신호의 재생을 통해 검출 오류 포화 현상을 해결하여 우수한 성능을 얻을 수 있다. 결과적으로 Multistage Adaptive Partial PIC는 시변 특성의 다양한 채널환경에서 단순한 최적화 방법을 제공하고 기존 Multistage Partial PIC보다 적은 단계에서 최적성능을 보였다. 줄어든 단계이외에도 레이크 수신기의 출력단에서 간섭 신호를 제거하는 방식으로 설계하여 시스템의 복잡도를 대폭 줄였다. Multistage Adaptive Partial PIC를 사용함으로써 고속의 데이터 전송에서도 간섭 신호의 정밀한 재생과 효율적인 제거를 통해 초기 검출 오류로 인한 검출 오류 포화 현상을 해결하고 성능을 향상시킬 수 있음을 제시하였다.
본 논문에서는 컬러 비디오 시퀀스 상에서 눈과 입에 해당하는 얼굴 특징점을 고속으로 추출하는 방법을 제안한다. 자유로운 움직임을 갖는 얼굴 영역을 안정적으로 추출하기 위해 얼굴 색상 분포를 이용한 색상 변환 영상에 움직임 검출 기법을 적용하여 움직이는 살색 부분만을 효율적으로 검출하는 색상 움직임 개념을 사용하였다. 움직임 정보는 살색의 가능성 정도에 따라 가중치가 주어지며 화소 단위의 움직임 여부를 결정하는 문턱값도 살색의 가능성 정도에 따라 적응적으로 결정된다. 눈의 색상분포와 형태소 연산자를 사용한 움직임 살색 영역에서 눈 후보 영역을 추출하고 눈과 눈썹의 상호 위치 관계를 이용하여 눈의 영역을 최종 결정한다. 입의 영역은 눈의 위치를 기준으로 입 후보 영역을 정하고 색상 히스토그램을 이용하여 입의 영역을 검출한다. 찾아진 눈과 입의 영역에서 정확한 특징점의 위치를 구하기 위해 PCA (Principal Component Analysis)를 사용하였다. 실험 결과 복잡한 배경, 개인적인 편차, 얼굴의 방향과 크기 등에 영향을 받지 않고 고속으로 정확한 얼굴의 특징점을 추출할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.