• Title/Summary/Keyword: 적응영역 다목적 유전자 알고리즘

Search Result 3, Processing Time 0.015 seconds

A Study on Real-Coded Adaptive Range Multi-Objective Genetic Algorithm for Airfoil Shape Design (익형 형상 설계를 위한 실수기반 적응영역 다목적 유전자 알고리즘 연구)

  • Jung, Sung-Ki;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.509-515
    • /
    • 2013
  • In this study, the real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was developed for an airfoil shape design. In order to achieve the better aerodynamic characteristics than reference airfoil at landing and cruise conditions, maximum lift coefficient and lift-to-drag ratio were chosen as object functions. Futhermore, the PARSEC method reflecting geometrical properties of airfoil was adopted to generate airfoil shapes. Finally, two airfoils, which show better aerodynamic characteristics than a reference airfoil, were chosen. As a result, maximum lift coefficient and lift-to-drag ratio were increased of 4.89% and 5.38% for first candidate airfoil and 7.13% and 4.33% for second candidate airfoil.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Optimal LAN Design Using a Pareto Stratum-Niche Cubicle Genetic Algorithm (PS-NC GA를 이용한 최적 LAN 설계)

  • Choi, Kang-Hee;Jung, Kyoung-Hee
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.3
    • /
    • pp.539-550
    • /
    • 2005
  • The spanning tree, which is being used the most widely in indoor wiring network, is chosen for the network topology of the optimal LAN design. To apply a spanning tree to GA, the concept of $Pr\ddot{u}fer$ numbers is used. $Pr\ddot{u}fer$ numbers can express he spanning tree in an efficient and brief way, and also can properly represent the characteristics of spanning trees. This paper uses Pareto Stratum-Niche Cubicle(PS-NC) GA by complementing the defect of the same priority allowance in non-dominated solutions of pareto genetic algorithm(PGA). By applying the PS-NC GA to the LAN design areas, the optimal LAN topology design in terms of minimizing both message delay time and connection-cost could be accomplished in a relatively short time. Numerical analysis has been done for a hypothetical data set. The results show that the proposed algorithm could provide better or good solutions for the multi-objective LAN design problem in a fairly short time.

  • PDF