• 제목/요약/키워드: 적응모델 선택

검색결과 138건 처리시간 0.025초

다변량 퍼지 의사결정트리의 적응 기법 (Adaptation method of multivariate fuzzy decision tree )

  • 전문진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.17-18
    • /
    • 2008
  • 다변량 퍼지 의사결정트리(이하 MFDT)는 학습 모델의 구조가 간소하고 분류율이 높다는 장점 때문에 일반 퍼지 의사결정트리를 대신해 손동작 인식 시스템의 분류기로 사용되었다. 다양한 사용자의 손동작 특성을 분류하기 위해 여러 개의 인식 모델을 만들고 새로운 사용자에게 가장 적합한 모델을 선택해 사용하는 모델 선택 기법도 손동작 인식에 적용되었다. 모델 선택 과정을 통해 선택된 모델은 기존 모델 중에서 새로운 사용자의 특성에 가장 가깝지만 해당 사용자에 최적화된 모델이라고는 할 수 없다. 이 논문에서는 MFDT 모델을 새로 입력된 데이터를 이용해 적응시키는 방법을 설명하고 실험 결과를 통해 적응 성능을 검증한다.

미전사 음성 데이터베이스를 이용한 가우시안 혼합 모델 적응 기반의 음성 인식용 음향 모델 변환 기법 (Acoustic Model Transformation Method for Speech Recognition Employing Gaussian Mixture Model Adaptation Using Untranscribed Speech Database)

  • 김우일
    • 한국정보통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.1047-1054
    • /
    • 2015
  • 본 논문에서는 음성 인식 성능 향상을 위해 미전사된 음성 데이터베이스를 이용한 효과적인 음향 모델 변환 기법을 기술한다. 본 논문에서 기술하는 모델 변환 기법에서는 기존의 적응 기법을 이용하여 환경에 적응된 GMM을 얻는다. HMM의 가우시안 요소와 유사한 요소를 선택하여 선택된 가우시안 요소의 변환 벡터를 구하고 이를 평균 파라미터 변환에 이용한다. GMM 적응 기반의 모델 변환 기법을 기존의 MAP, MLLR 적응 기법과 결합하여 적용한 결과, 자동차 잡음과 음성 Babble 잡음 환경에서 기존의 MAP, MLLR을 단독으로 사용할 경우보다 높은 음성 인식성능을 나타낸다. 온라인 음향 모델 적응 실험에서도 MLLR과 결합할 경우 기존의 MLLR을 단독으로 사용할 때보다 효과적인 모델 적응 성능을 나타낸다. 이와 같은 결과는 본 논문에서 소개한 GMM 적응 기반의 모델 변환 기법을 채용함으로써 미전사된 음성 데이터베이스를 음향 모델 적응 기법에 효과적으로 활용할 수 있음을 입증한다.

퍼지 결정 방법을 이용한 감정 기반의 적응형 에이전트 모델 (An Emotion Based Adaptive Agent Model using a Fuzzy Decision Method)

  • 이의성;윤소정;오경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.18-20
    • /
    • 2000
  • 에이전트를 다른 소프트웨어와 구별 시켜주는 요인들은 여러 가지가 있지만 그 중에서도 가장 큰 특징은 에이전트의 자율성, 적응성, 그리고 지능을 들 수 있다. 이러한 것을 가능하게 만들기 위해서는 행동 선택을 유발하는 모티브의 생성이 자동적으로 이루어져야 한다. 이러한 행동 선택에 있어서 자동적인 모티브를 제공해 주는 것이 감정이다. 감정은 그것을 가지고 있는 자율 시스템이 그 동안 겪어온 외부 환경과 내부 상태에 대한 글로벌 상태를 함축하고 있다. 그러므로, 접근 가능한 정보와 자원이 제한되어 있는 자율 시스템이 다중의 목표, 환경에서의 모호성과 다른 에이전트와의 조정 등을 하는데 있어서 감정 모델은 유용한 해결책을 제시해 줄 수 있다. 본 논문에서는 에이전트가 환경과 적응하면서 변화하는 에이전트의 내부 상태의 변화와 외부 사건에 대한 에이전트의 인식과 평가를 계속 반영하여 에이전트가 시스템 환경을 경험하면서 가질 수 있는 에이전트만의 시스템에 대한 광범위한 시야를 갖도록 감정 모델을 구축하는 것을 목적으로 한다. 또한 이렇게 생성된 감정 델을 통해서 에이전트에 특정 사건이 발생하였을 때 에이전트가 감정 모델에 기초하여 적절히 행동에 반응할 수 있는 적응적 에이전트 모델을 제시한다.

  • PDF

러프 집합 기반 적응 모델 선택을 갖는 다중 모델 퍼지 예측 시스템 구현과 시계열 예측 응용 (Multiple Model Fuzzy Prediction Systems with Adaptive Model Selection Based on Rough Sets and its Application to Time Series Forecasting)

  • 방영근;이철희
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.25-33
    • /
    • 2009
  • 최근 시계열 예측에 결론부에 선형식을 갖는 TS 퍼지 모델이 많이 이용되고 있는데, 이의 예측 성능은 정상성과 같은 데이터의 특성과 밀접한 관련이 있다. 그러므로 본 논문에서는 특히 비정상 시계열 예측에 매우 효과적인 새로운 예측 기법을 제안하였다. 시계열의 패턴이나 규칙성을 잘 끌어내기 위한 데이터 전처리 과정을 도입하고 다중 모델 TS 퍼지 예측기를 구성한 뒤, 러프집합을 이용한 적응 모델 선택 기법에 의해 입력 데이터의 특성에 따라 가변적으로 적합한 예측 모델을 선택하여 시계열 예측이 수행되도록 하였다. 마지막으로 예측 오차를 감소시키기 위하여 오차 보정 메커니즘을 추가함으로써 예측 성능을 더욱 향상시켰다. 시뮬레이션을 통해 제안된 기법의 성능을 검증하였다. 제안된 기법은 예측 모델 구현과 예측 수행 과정에서 시계열 데이터의 특성들을 잘 반영할 수 있으므로 불확실성과 비정상성을 갖는 시계열의 예측에 매우 효과적으로 이용될 수 있을 것이다.

한국의 배우자 선택과 결혼적응의 메커니즘 : 인간 발달 생태학적 모형의 중매, 연애 결혼에의 적용 (A Person-Process-Context Model of Mate Selection and Marital Adjustment in Arranged and Love-Based Korean Marriages)

  • 전효정
    • 대한가정학회지
    • /
    • 제36권11호
    • /
    • pp.19-41
    • /
    • 1998
  • 본 연구는 개인-환경 상호작용 가정을 바탕으로 한국의 두 가지 결혼 유형에 따른 배우자 선택과 결혼 적응의 메커니즘을 이해하기 위하여 개인, 과정, 맥락의 역할을 포함안 연구 모델 (person-process-context model)을 적용시켰다. 배우사 선택, 이에 따른 부부간 유사성과 결혼적응에 있어 개인과 사회적 특성의 상대적 기여도와 그 매커니즘을 조사하기 위해 154쌍의 한국 부부를 대상으로 설문조사 하였다. 연구결과에 의하면, 중매결혼과 연애결혼의 결혼유형에 관계없이 모두 동질혼의 경향을 보였다. 개인적 특성이 결혼 적응도와 높은 상관을 보인 반면, 부부간 유사성은 결혼 적응도와 유의한 상관이 업었다. 이는 결혼 적응에 있어서 환경적 요소(e. g. dyadic similarity)보다 개인적 요소가 중요하다는 것을 시사한다. 결혼유형에 따른 동질혼의 정도에는 유의한 차이가 없으며, 또한 동질혼의 정도에 따른 결혼적응도에는 유의한 차이가 발견되지 않았다. 연애결혼과 중매결혼의 중요한 차이는 결혼전 교제기간 이었다. 연애 결혼한 부부는 비교적 오랜 교제 기간을 통해 더 만족한 결혼생활을 영위하는 것으로 나타났다. 결혼전 교제기간의 효과를 통제한 후 두 결혼 유형의 결혼적응도에 대한 차이는 사라졌다. 연구결과들을 결혼과 성격에 관한 이론을 비탕으로 논의하였다.

  • PDF

모델 기반의 자가 적응형 소프트웨어 설계 (Design Of Model based Self-Adaptive System)

  • 이상희;이은석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.535-537
    • /
    • 2005
  • 최근 컴퓨팅 환경의 급격한 발전과 다양화는 소프트웨어 외부 환경의 복잡성과 변화를 야기시켰으며, 소프트웨어는 예상하지 못한 외부 환경 변화에 직면하였을 때, 지속적으로 서비스의 제공과 동시에 동적 변경에 대한 적응 능력을 필요로 하게 되었다. 본 논문에서는 외부 환경의 변화를 인식하고, 대안을 선택하기 위해 '어떻게' 적응하도록 할 것 인가에 대해 모델을 이용한 적응 매카니즘을 제안하며, 시스템이 고려해야 할 컨텍스트 정보들을 모델링을 통하여 소프트웨어가 행위를 변경할 때 이용할 수 있도록 모델링 기법과 모델 기반 자가 적응형 프로세스를 제안한다. 또한, 프로세스를 이용하여 동작하는 모델 기반 자가 적응 시스템의 일반적 모듈들을 제시하고. 그 유효성을 확인하기 위하여 원격 화상 회의 시스템에 적용하였다.

  • PDF

적응적인 Saliency map 모델 구현을 통한 얼굴 검출 (Face Detection through Implementation of adaptive Saliency map)

  • 김기중;한영준;한현수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.153-156
    • /
    • 2007
  • 인간의 시각 시스템은 선택적 주의 집중에 의해 시각 수용체로 도달되는 많은 물체들 중에서 필요한 정보만을 추출하여 원하는 작업을 수행한다. Itti와 Koch는 시각적 주의를 제어할 수 있는, 신경계를 모방한 계산적 모델을 제안하였으나 조명환경에 고정적인 saliency map을 구성하였다. 따라서, 본 논문에서는 영상에서 ROI(region of interest)을 탐지하기 위한 조명환경에 적응적인 saliency map 모델을 구성하는 기법을 제시한다. 변화하는 환경에서 원하는 특징을 부각시키기 위하여 상황에 적응적인 동적 가중치를 부여한다. 동적 가중치는 conspicuity map에 S.K. Chang이 제안한 PIM(Picture Information Measure)을 적용시켜 정보량을 측정한 후, 이에 따라 정규화된 값을 부여함으로써 구현한다. 제안하는 조명환경에 강인한 적응적인 saliency map 모델 구현의 성능을 얼굴검출 실험을 통하여 검증하였다.

  • PDF

적응적 워터마크 삽입강도를 갖는 지각적 데이터 은닉 모델 (Perceptual Data Hiding Model with Adaptive Watermark Strength)

  • 조영웅;장봉주;김응수;문광석;권기룡
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.287-290
    • /
    • 2002
  • 본 논문에서는 디지털 컨텐츠 저작권 보호를 위해 강인성과 비가시성의 유지를 위한 보다 효과적인 방법으로 웨이브릿 변환에서 적응적 워터마크 삽입강도를 갖는 지각적 데이터 은닉 모델을 제안한다. 먼저 영상을 9/7 쌍직교 웨이브릿 필터를 사용해 4레벨로 다해상도 분해한다. 다음으로 연속부대역 양자화(successive subband quantization)를 통한 시각적 중요계수(perceptually significant coefficient: PSC)들을 선정하여 선택된 계수들에 대해서만 워터마크 정보를 삽입한다. 지각 모델은 정상상태의 일반화 가우시안 모델(generalized gaussian model)로 추정된 NVF(noise visibility function)로 에지와 텍스쳐영역 그리고 평탄영역에 따라 각각 적응적으로 삽입되게 한다. 이는 각 서브밴드 내의 분산과 형상계수(shape parameter)에 의해 결정된다. 적응적 워터마크의 삽입강도를 갖기 위해 에지와 텍스쳐영역의 삽입강도는 각 서브밴드의 주파수 감도(frequency sensitivity)로 결정되고, 평탄영역의 삽입강도는 영상의 국부적 특성에 근거한 통계적 가중치를 사용한다. 삽입되는 워터마크는 랜덤시퀀스로 N(0,1)이다. 여러 가지 공격에 대한 실험으로 제안한 방법의 비가시성과 강인성을 확인한다.

  • PDF

병렬 결합된 혼합 모델 기반의 특징 보상 기술 (Feature Compensation Method Based on Parallel Combined Mixture Model)

  • 김우일;이흥규;권오일;고한석
    • 한국음향학회지
    • /
    • 제22권7호
    • /
    • pp.603-611
    • /
    • 2003
  • 본 논문에서는 잡음 환경에서 보다 강인한 성능을 얻기 위하여 음성 모델 기반의 효과적인 특징 보상 기법을 제안한다. 일반적인 모델 기반의 특징 보상 기법은 오열 음성 데이터베이스를 이용한 훈련 과정을 필요로 하므로 온라인 상에서의 적응 과정에 적합하지 않다. 제안한 방법에서는 보정 인자 추정 과정에서 병렬 모델 결합 기법을 도입함으로써 훈련 과정을 필요하지 않게 하였다. 모델의 결합 과정이 HMM 전체가 아닌 가우시안 혼합 (Mixture) 모델에만 적용이 되므로, 계산이 비교적 간단하게 되어 온라인 상에서의 모델 결합을 가능하게 하였다. 병렬적 모델 결합의 도입은 잡음 모델의 독립적인 이용을 가능하게 하였고, 본 논문에서는 MAP (Maximum A Posteriori) 적응을 통해 잡음 모델 갱신을 실시하였다 또한 잡음 오열 과정에 대한 근사화를 통해 연속적 형태의 채널 정규화 기법을 유도하여 적용하였다. 보다 효율적인 구현을 위하여 선택적인 모델 결합 방식을 도입함으로써 연산량을 줄일 수 있는 방법을 제시하였다. 제안한 특징 보상 기법이 부가적인 배경 잡음과 채널 왜곡이 존재하는 잡음 환경에서 음성 인식 시스템의 성능을 향상시키는데 효과적임을 실험을 통해 확인할 수 있었다.

적응적 이러닝 시스템의 효율적인 설계를 위한 SCROM 국제표준 수정에 관한 연구 (A Study on the Modification of SCORM International Standard to Design Adaptive Personalization E-Learning System )

  • 이미정;김기석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.1170-1172
    • /
    • 2008
  • 본 논문에서는 적응적 이러닝 시스템을 구현하기에 다소 미흡하였던 SCORM 2004 국제표준을 수정한 새로운 표준을 제안한다. 학습자가 선택하는 과목과 학습객체에 대한 데이터 모델을 분리하였고, 이것을 이용한 API 메소드를 추가하였다. 또한 학습객체정보, 그것들의 관계와 과목을 구성하는 학습객체들의 경로에 대한 정보를 설명하는 섹션을 Manifest 파일에 추가하였다. 기존 SCORM 2004 를 수정한 새로운 표준을 따르면 학습자가 과목을 선택하는 시점과 학습 객체가 선택되는 시점을 분리할 수 있고, 기존 학습객체 단위보다 상위 단위의 학습객체 시퀀싱이 가능하게 되어 효율적인 적응적 이러닝 시스템을 구현할 수 있게 된다.