• Title/Summary/Keyword: 적용

Search Result 132,436, Processing Time 0.133 seconds

Effects of Changes in Collimation Size and the sub ROI on Exposure Index of Hand Radiography (손 방사선검사에서 조사야 크기와 보조관심영역 변화가 노출지수 값에 미치는 영향)

  • Young-Cheol Joo;Dong-Hee Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.851-857
    • /
    • 2023
  • The purpose of this study is to investigate the effect of changes in collimation size and sub ROI on exposure index(EI) in hand radiography, present collimation size and EI suitable for average hand size of Koreans, and present the effect of changes in sub ROI on EI. The subjects of this study were hand-wrist phantom, and the exposure conditions were set to 55 kVp, 125, mA, and 6.25 mAs, and source to image receptor distance was applied to 110 cm. Based on the vendor recommended sub-ROI (18.7" × 18.7", 8" × 10", 8" × 7.4", 6" × 7.4")and the textbook's recommended sub-ROI 8" × 10", each obtaining 30 images, and comparing the EI shown in the equipment. The EI according to the change in the size of the collimation were 1663.7±4.52, 8"×10" is 1489.1±4.49, 8"×7.4" is 1716.9±3.00, 6"×7.4" is 168.7±3.66 for each EI, and the average value of each value was statistically significant. The average EI according to the sub ROI change was 1489.1±4.49 for SS, LS was 1694.8±5.19 for AEC, 2052.9±5.96, VR was 1548.3±3.20, and HR was 1663.2±4.33. The appropriate field size considering the hand size of Koreans was found to be 8"×7.4". In addition, when the field size increases based on the generally known field size (8"×10") during hand radiography, the EI value changes from a maximum of 15% to a minimum of 11%, and the sub ROI shape based on sub ROI 'SS' Depending on the change, the EI value increased from a maximum of 37% to a minimum of 3%.

Analyze Technologies and Trends in Commercialized Radiology Artificial Intelligence Medical Device (상용화된 영상의학 인공지능 의료기기의 기술 및 동향 분석)

  • Chang-Hwa Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.881-887
    • /
    • 2023
  • This study aims to analyze the development and current trends of AI-based medical imaging devices commercialized in South Korea. As of September 30, 2023, there were a total of 186 AI-based medical devices licensed, certified, and reported to the Korean Ministry of Food and Drug Safety, of which 138 were related to imaging. The study comprehensively examined the yearly approval trends, equipment types, application areas, and key functions from 2018 to 2023. The study found that the number of AI medical devices started from four products in 2018 and grew steadily until 2023, with a sharp increase after 2020. This can be attributed to the interaction between the advancement of AI technology and the increasing demand in the medical field. By equipment, AI medical devices were developed in the order of CT, X-ray, and MR, which reflects the characteristics and clinical importance of the images of each equipment. This study found that the development of AI medical devices for specific areas such as the thorax, cranial nerves, and musculoskeletal system is active, and the main functions are medical image analysis, detection and diagnosis assistance, and image transmission. These results suggest that AI's pattern recognition and data analysis capabilities are playing an important role in the medical imaging field. In addition, this study examined the number of Korean products that have received international certifications, particularly the US FDA and European CE. The results show that many products have been certified by both organizations, indicating that Korean AI medical devices are in line with international standards and are competitive in the global market. By analyzing the impact of AI technology on medical imaging and its potential for development, this study provides important implications for future research and development directions. However, challenges such as regulatory aspects, data quality and accessibility, and clinical validity are also pointed out, requiring continued research and improvement on these issues.

A study on quantification of α-quartz, cristobalite, kaolinite mixture in respirable dust using by FTIR (FTIR를 이용한 호흡성 분진중 α-quartz, cristobalite, kaolinite 혼합물 정량 분석 연구)

  • Eun Cheol Choi;Seung Ho Lee
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.315-323
    • /
    • 2023
  • This study is to quantify α-quartz, cristobalite and kaolinite using by FTIR in respirable dust generated in the mining workplace. Various minerals in mines can interfere with peaks when quantifying respirable crystalline silica by FTIR. Therefore, for accurate quantification, it is necessary to remove interfering substances or correct the peaks that cause interference. To confirm the peaks occurring in α-quartz, cristobalite and kaolinite, each standard material was diluted with KBr and scanned in the range of 400 cm-1 to 4000 cm-1 using by FTIR. As a result of scanning the analytes, it was decided to use the peaks of 797.66 cm-1 and 695.25 cm-1 for α-quartz, 621.58 cm-1 for cristobalite, and 3696.47 cm-1 for kaolinite. When the above materials are mixed, interference occurs at the peak for quantification, which is corrected by the calculation formula. The analysis of the mixture of α-quartz and cristobalite shows the average bias (%) of 2.64 (corrected) at α-quartz (797.66 cm-1), 5.61 (uncorrected) at α-quartz (695.25 cm-1) and 1.51 (uncorrected) at cristobalite (621.58 cm-1). The analysis of the mixture of α-quartz and kaolinite shows the average bias(%) of 1.79(corrected) at α-quartz (797.66 cm-1), 3.92 (corrected) at α-quartz (695.25 cm-1) and 2.58 (uncorrected) at kaolinite (3696.47 cm-1). The analysis of the mixture of cristobalite and kaolinite shows the average bias (%) of 2.15 (corrected) at cristobalite (621.58 cm-1), 4.32 (uncorrected) at kaolinite (3696.47 cm-1). The analysis of the mixture of αquartz and cristobalite and kaolinite shows the average bias (%) of 1.93(corrected) at α-quartz (797.66 cm-1), 6.47 (corrected) at α-quartz (695.25 cm-1) and 1.77 (corrected) at cristobalite (621.58 cm-1) and 2.61 (uncorrected) at kaolinite (3696.47 cm-1). The experimental results showed that the deviation caused by peak interference by two or three substances could be corrected to less than 6 % of the average deviation. This study showed the possibility of correcting and quantifying when various interfering substances that are difficult to remove are mixed.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Development of Weight Estimation Equations and Weight Tables for Larix kaempferi and Pinus rigida Stand (일본잎갈나무와 리기다소나무의 중량추정식 및 중량표 개발)

  • Jintaek Kang;Chiung Ko;Jeongmuk Park;Jongsu Yim;Sun-Jeong Lee;Myoungsoo Won
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.472-489
    • /
    • 2023
  • This study was conducted to derive the optimal estimation equations for deriving the green and dry weights of Larix kaempferi (Japanese larch) and Pinus rigida (Rigida pine), which are major coniferous tree species in South Korea. The equations were then used to develop weight tables. Table development began with the sampling of 150 L. kaempferi and 90 P. rigida trees distributed throughout the national scale, after which green weights were measured on-site. Samples from each stand were then collected, and their dry weights were measured in a laboratory. The equation used to calculate green and dry weights was divided into a one-variable formula that uses only the diameter at breast height (DBH) and a two-variable equation that employs DBH and height. The equations used to estimate the green and dry weights of logs were divided into one- and two-variable equations using DBH. Statistical data, such as the fitness index (FI), root mean square error, standard error of estimation, and residual diagram, were used to verify the suitability of the estimation equations. Applicability was examined by calculating weights using the derived optimal equations. The equation W = bD+cD2 was used in measurements involving only DBH, whereas the equation W = aDbHc was employed in cases involving both diameter and height at breast height. The FI of W = bD+cD2 was 0.91, while that of W = aDbHc was 0.95, both of which are high values. With these estimation formulas, weight tables for the green and dry weights of L. kaempferi and P. rigida were prepared and compared with weight tables created 20 years ago. The green and dry weight tables of both species were larger.

Estimating Optimal Timber Production for the Economic and Public Functions of the National Forests in South Korea (국유림의 경제적·공익적 기능을 고려한 적정 목재생산량 추정)

  • Yujin Jeong;Younghwan Kim;Yoonseong Chang;Dooahn Kwak;Gihyun Park;Dayoung Kim;Hyungsik Jeong;Hee Han
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.561-573
    • /
    • 2023
  • National forests have an advantage over private forests in terms of higher investment in capital, technology, and labor, allowing for more intensive management. As such, national forests are expected to serve not only as a strategic reserve of forest resources to address the long-term demand for timber but also to stably perform various essential forest functions demanded by society. However, most forest stands in the current national forests belong to the fourth age class or above, indicating an imminent timber harvesting period amid an imbalanced age class structure. Therefore, if timber harvesting is not conducted based on systematic management planning, it will become difficult to ensure the continuity of the national forests' diverse functions. This study was conducted to determine the optimal volume of timber production in the national forests to improve the age-class structure while sustainably maintaining their economic and public functions. To achieve this, the study first identified areas within the national forests suitable for timber production. Subsequently, a forest management planning model was developed using multi-objective linear programming, taking into account both the national forests' economic role and their public benefits. The findings suggest that approximately 488,000 hectares within the national forests are suitable for timber production. By focusing on management of these areas, it is possible to not only improve the age-class distribution but also to sustainably uphold the forests' public benefits. Furthermore, the potential volume of timber production from the national forests for the next 100 years would be around 2 million m3 per year, constituting about 44% of the annual domestic timber supply.

Viability Test and Bulk Harvest of Marine Phytoplankton Communities to Verify the Efficacy of a Ship's Ballast Water Management System Based on USCG Phase II (USCG Phase II 선박평형수 성능 평가를 위한 해양 식물플랑크톤군집 대량 확보 및 생물사멸시험)

  • Hyun, Bonggil;Baek, Seung Ho;Lee, Woo Jin;Shin, Kyoungsoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.483-489
    • /
    • 2016
  • The type approval test for USCG Phase II must be satisfied such that living natural biota occupy more than 75 % of whole biota in a test tank. Thus, we harvested a community of natural organisms using a net at Masan Bay (eutrophic) and Jangmok Bay (mesotrophic) during winter season to meet this guideline. Furthermore, cell viability was measured to determine the mortality rate. Based on the organism concentration volume (1 ton) at Masan and Jangmok Bay, abundance of ${\geq}10$ and $<50{\mu}m$ sized organisms was observed to be $4.7{\times}10^4cells\;mL^{-1}$and $0.8{\times}10^4cells\;mL^{-1}$, and their survival rates were 90.4 % and 88.0 %, respectively. In particular, chain-forming small diatoms such as Skeletonema costatum-like species were abundant at Jangmok Bay, while small flagellate ($<10{\mu}m$) and non chain-forming large dinoflagellates, such as Akashiwo sanguinea and Heterocapsa triquetra, were abundant at Masan Bay. Due to the size-difference of the dominant species, concentration efficiency was higher at Jangmok Bay than at Masan Bay. The mortality rate in samples treated by Ballast Water Treatment System (BWMS) (Day 0) was a little lower for samples from Jangmok Bay than from Masan Bay, with values of 90.4% and 93%, respectively. After 5 days, the mortality rates in control and treatment group were found to be 6.7% and >99%, respectively. Consequently, the phytoplankton concentration method alone did not easily satisfy the type approval standards of USCG Phase II ($>1.0{\times}10^3cells\;mL^{-1}$ in 500-ton tank) during winter season, and alternative options such as mass culture and/or harvesting system using natural phytoplankton communities may be helpful in meeting USCG Phase II biological criteria.

Proposal for the Hourglass-based Public Adoption-Linked National R&D Project Performance Evaluation Framework (Hourglass 기반 공공도입연계형 국가연구개발사업 성과평가 프레임워크 제안: 빅데이터 기반 인공지능 도시계획 기술개발 사업 사례를 바탕으로)

  • SeungHa Lee;Daehwan Kim;Kwang Sik Jeong;Keon Chul Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.31-39
    • /
    • 2023
  • The purpose of this study is to propose a scientific performance evaluation framework for measuring and managing the overall outcome of complex types of projects that are linked to public demand-based commercialization, such as information system projects and public procurement, in integrated national R&D projects. In the case of integrated national R&D projects that involve multiple research institutes to form a single final product, and in the case of demand-based demonstration and commercialization of the project results, the existing evaluation system that evaluates performance based on the short-term outputs of the detailed tasks comprising the R&D project has limitations in evaluating the mid- and long-term effects and practicality of the integrated research products. (Moreover, as the paradigm of national R&D projects is changing to a mission-oriented one that emphasizes efficiency, there is a need to change the performance evaluation of national R&D projects to focus on the effectiveness and practicality of the results.) In this study, we propose a performance evaluation framework from a structural perspective to evaluate the completeness of each national R&D project from a practical perspective, such as its effectiveness, beyond simple short-term output, by utilizing the Hourglass model. In particular, it presents an integrated performance evaluation framework that links the top-down and bottom-up approaches leading to Tool-System-Service-Effect according to the structure of R&D projects. By applying the proposed detailed evaluation indicators and performance evaluation frame to actual national R&D projects, the validity of the indicators and the effectiveness of the proposed performance evaluation frame were verified, and these results are expected to provide academic, policy, and industrial implications for the performance evaluation system of national R&D projects that emphasize efficiency in the future.

Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface (영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로)

  • Soyeong Jang;Yeongbin Park;Jaeyeop Kwon;Sangheon Lee;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1353-1369
    • /
    • 2023
  • In the event of a disaster accident at sea, the scale of damage will vary due to weather effects such as wind, currents, and tidal waves, and it is obligatory to minimize the scale of damage by establishing appropriate control plans through quick on-site identification. In particular, it is difficult to identify pollutants that exist in a thin film at sea surface due to their relatively low viscosity and surface tension among pollutants discharged into the sea. Therefore, this study aims to develop an algorithm to detect suspended pollutants on the sea surface in RGB images using imaging equipment that can be easily used in the field, and to evaluate the performance of the algorithm using input data obtained from actual waters. The developed algorithm uses image enhancement techniques to improve the contrast between the intensity values of pollutants and general sea surfaces, and through histogram analysis, the background threshold is found,suspended solids other than pollutants are removed, and finally pollutants are classified. In this study, a real sea test using substitute materials was performed to evaluate the performance of the developed algorithm, and most of the suspended marine pollutants were detected, but the false detection area occurred in places with strong waves. However, the detection results are about three times better than the detection method using a single threshold in the existing algorithm. Through the results of this R&D, it is expected to be useful for on-site control response activities by detecting suspended marine pollutants that were difficult to identify with the naked eye at existing sites.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.