• Title/Summary/Keyword: 적외선광학

Search Result 363, Processing Time 0.024 seconds

Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Di-Azobenzene Group in the Side Chain (곁사슬에 디아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 특성에 관한 연구)

  • Lee, Sang-Bae;Yang, Jung-Sung;Park, Dong-Kyu
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.496-502
    • /
    • 2001
  • Thermally stable polyquinonediimines(PQDI) containing di-azobenzene in the side chain were synthesized by means of condensation polymerization under $TiCl_4$. The synthesized monomers and polymers were identified by FT-IR, $^1H-NMR$, and elemental analysis. Especially, the polymerization of PQDI was confirmed by the double-bonding peak of >C=N appearing near 1625cm$^{-1}$ in FT-IR spectrum. PQDI with di-azobenzene group in one side chain was insoluble in methanol, acetone and non-polar solvents having big dielectric constant, but had good solubility in polar solvents having small dielectric constant. Molecular weight distribution of PQDI measured by GPC was 1.38. It was confirmed to be amorphous polymer through X-ray diffraction by the appearance of the halo in case of PQDI containing di-azobenzene in the side chain. The glass transition temperature ($_g$) of synthesized polymer was measured to be 116$^{\circ}C$ by differential scanning calorimetry. The SHG value for ${\chi}^{(2)}$ was 1.2 pm/V (${\lambda}$ = 1.542 ${\mu}$m). The SHG value slightly decreased in an early stage but showed temporal stability after 20 hours.

  • PDF

Scientific Investigation for Conservation Methodology of Bracket Mural Paintings of Daeungjeon Hall in Jikjisa Temple (직지사 대웅전 포벽화 보존방안을 위한 과학적 조사)

  • Lee, Hwa Soo;Kim, Seol Hui;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.107-118
    • /
    • 2018
  • This report does studied for making the method of conserving bracket murals in Daeungjeon of Jikjisa Temple, through the scientific way. Results of evaluated the conservation status at the braket mural paintings, most serious damage is structural damage like cracks, breakage, and delamination. After optical investigation, a characteristic point wasn't found such as underdrawing or traces of a coat of paint. The ultrasonic examination speed by each wall painting was measured from about 195.8 m/s to 392.7 m/s, according to the location of the surface, and it was able to compare the surface properties according to the location. In Infrared-thermal image measurement shows that wall layer separation and paint layer delamination are closely detected, therefore it was able to judge of damage on the objective way. Material analysis revealed that the walls were made by sand and weathering soil. The wall layer combined sand with less than fine sand size by nearly 5:5, and the finishing layer was found to have mixed medium sand and fine sand at approximately 6:4 rates. However, In case of finishing layer, mixing ratios of sizes less than very fine sand were found to be significantly lower than wall. Therefore, it is estimated that the plysical damage such as the separation between the layers of the walls created in the braket mural paintings, is continuously caused by changes in the internal stresses and volume ratio caused by the density differences between the wall and the finishing layers.

Hydrogenated and annealed effect of CdTe:In

  • ;Yuldashev
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.96-96
    • /
    • 1999
  • CdTe는 일반적으로 광전 소자나 Xtjs 및 λ선 감지 소자로서 많은 연구가 되어지고 있는 물질이다. 특히 적외선 감지 소자로 쓰이고 있는 HgCdTe 물질의 기판으로서도 많은 연구가 진행되고 있다. 이러한 여러 가지 목적으로 사용함에 있어서 CdTe 내에 가지고 있는 여러 가지 불순물에 의한 영향으로 각종 결함밴드들이 형성됨으로서 소자로서의 응용에 많은 지장을 주고 있다. 이러한 이유로 여러 가지 방법으로 불순물 및 결합에 의한 준위에 관한 연구들이 진행되고 있다. 본 실험에서는 MBE 법으로 성장된 In 도핑된 CdTe 박막의 광학적 성질을 관찰하기 위하여 수소화 및 열처리를 하여 PL 법을 이용하여 관찰하여 보앗다. 열처리는 Cd 분위기의 50$0^{\circ}C$에서 5시간 동안 수행하였으며 수소화는 rf plasma 장치를 이용하여 8$0^{\circ}C$에서 50mW/c2의 출력으로 1시간동안 수행하여 주었다. 열처리한 시료의 경우 PL 신호는 갓 성장한 시료와 비교하여 깊은 준위에 관련된 신호들만 변화가 있었을뿐 그리 큰 변화가 있지는 않았다. 그러나 수소화시킨 시료의 경우 전체적으로 피크의 크기가 5배정도 감소하는 것을 볼 수 있었는데 이것은 수소에 의하여 passivation된 효과로 볼 수 있다. 정량적인 passivation 효과를 보기 위하여 온도의존성 PL 측정을 하여 보았다. 측정에서 관측된 (D,h) emission lines의 FWHM을 비교하여 본 결과 FWHM 온도가 증가함에 따라 선형적으로 증가하는 것이 아니라 급격한 증가를 q이는 구간을 관착할 수 있었다. 이것은 CdTe내에 존재하는 전하를 띠고 있는 주게와 받게의 결합의 결과로 나타나는 현상으로 보여진다. 이러한 결과를 통하여 얕은 준위에 있는 주게 불순물의 농도를 계산해 보았고 Hall 측정을 얻은 결과와 비교하여 보았다.판단된다. 따라서 이 기술은 기존의 광소자 제작을 위한 IFVD 방법의 문제점을 해결할 뿐만 아니라 결정 재성장 없이 도일한 기판상에 국부적으로 상이한 bandgap 영역을 만들 수 있기 때문에 광소자 제작에 적극 이용될 수 있다.나지 않았으며 BST 박막에서는 약 1.2V의 C-V이력현상이 보였다.를 이용하였으며, 이온주입후 열처리 온도에 따른 활성화 정도의 관찰을 위하여 4-point probe와 Hall measurement를 이용하였다. 증착된 다결정 SiGe의 두게를 nanospec과 SEM으로 분석한 결과 Gem이 함량이 적을 때는 높은 온도에서의 증착이 더 빠른 증착속도를 나타내었지만, Ge의 함량이 30% 되었을 때는 온도에 관계없이 일정한 것으로 나타났다. XRD 분석을 한 결과 Peak의 위치가 순수한 Si과 순수한 Ge 사이에 존재하는 것으로 나타났으며, ge 함량이 많아짐에 따라 순수한 Ge쪽으로 옮겨가는 경향을 보였다. SEM, ASFM으로 증착한 다결정 SiGe의 morphology 관찰결과 Ge 함량이 높은 박막의 입계가 다결정 Si의 입계에 비해 훨씬 큰 것으로 나타났으며 근 값도 증가하는 것으로 나타났다. 포유동물 세포에 유전자 발현벡터로써 사용할 수 있음으로 post-genomics시대에 다양한 종류의 단백질 기능연구에 맡은 도움이 되리라 기대한다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인 측면에서도 고부가 가치의 제품 개발에 따른 새로운 수요 창출과 수익률 향상, 기존의 기능성 안료를 나노(nano)화하여 나노 입자를 제조, 기존의 기능성 안료에 대한 비용 절감 효과등을 유도 할 수 있다. 역시 기술적인 측면에서도 특수소재 개발에 있어 최적의 나노 입자 제어기술 개발 및 나노입자를 기능성 소재로 사용하여 새로운 제품의 제조와 고압 기상 분사기술의 최적화에 의한 기능성 나노 입자 제조 기술을 확립하고 2차 오염 발생원인 유

  • PDF

As 조성비에 따른 InAsSb alloy 유전함수와 전이점 연구

  • Hwang, Sun-Yong;Yun, Jae-Jin;Kim, Tae-Jung;Aspnes, D.E.;Kim, Yeong-Dong;Kim, Hye-Jeong;Chang, Y.C.;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.161-161
    • /
    • 2010
  • InAsSb alloy system 은 HgCdTe 를 대체하는 적외선 광소자 및 검출기 등에 응용이 가능한 유망한 물질이지만 정확한 유전함수 및 전이점의 연구는 미흡한 실정이다. 본 연구에서는 타원 편광 분석법을 이용하여 1.5 ~ 6 eV 의 분광 영역에서 As 조성비를 각기 (x = 0, 0.127, 0.337, 0.491, 0.726 및 1.00) 다르게 한 $InAs_xSb_{1-x}$ alloy의 유전함수를 측정하였다. 또한 표면에 자연산화막을 제거하기 위하여 Methanol 과 DI Water 로 표면을 세척 한 후 $NH_4OH$, Br in Methanol, HCl 등으로 적절한 화학적 에칭을 하여 산화막을 제거함으로서 순수한 InAsSb 의 유전함수를 측정할 수 있었다. 측정된 InAsSb 유전함수를 Standard analytic critical point line shape 방법으로 As 조성비에 따른 에너지 전이점을 얻을 수 있었다. 또한 얻어진 에너지 전이점 값을 이용하여 linear augmented Slater-type orbital 방법으로 전자 밴드 구조 계산을 하였고, 이를 바탕으로 $E_0$, $E_1$, $E_2$ 전이점 지역의 여러 전이점 ($E_1$, $E_1+\Delta_1$, $E_0'$, $E_0'+\Delta_0'$, $E_2$, $E_2+\Delta_2$, $E_2'$, $E_2'+\Delta_2$, $E_1'$) 의 특성을 정확히 정의할 수 있었다. 또한 As 조성비가 증가하면서 $E_2$, $E_2+\Delta_2$, $E_2'$, $E_2'+\Delta_2$ 전이점들이 서로 교차 되는 것을 발견하였고, 저온에서만 관측이 가능하였던 InSb 의 두 saddle-point (${\Delta_5}^{cu}-{\Delta_5}^{vu}$, ${\Delta_5}^{cl}-{\Delta_5}^{vu}$)를 상온에서 찾아내었다. 타원 편광 분석법을 이용한 전이점 연구 및 물성 분석은 InAsSb alloy 의 광학적 데이터베이스를 확보하는 성과와 더불어 새로운 디바이스기술 및 광통신 산업에도 유용한 정보가 될 것이다.

  • PDF

Sensitivity Analysis of IR Aerosol Detection Algorithm (적외선 채널을 이용한 에어로솔 탐지의 경계값 및 민감도 분석)

  • Ha, Jong-Sung;Lee, Hyun-Jin;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.507-518
    • /
    • 2006
  • The radiation at $11{\mu}m$ absorbed more than at $12{\mu}m$ when aerosols is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The difference of the two channels provides an opportunity to detect aerosols such as Yellow Sand even with the presence of clouds and at night. However problems associated with this approach arise because the difference can be affected by various atmospheric and surface conditions. In this paper, we has analyzed how the threshold and sensitivity of the brightness temperature difference between two channel (BTD) vary with respect to the conditions in detail. The important finding is that the threshold value for the BTD distinguishing between aerosols and cloud is $0.8^{\circ}K$ with the US standard atmosphere, which is greater than the typical value of $0^{\circ}K$. The threshold and sensitivity studies for the BTD show that solar zenith angle, aerosols altitude, surface reflectivity, and atmospheric temperature profile marginally affect the BTD. However, satellite zenith angle, surface temperature along with emissivity, and vertical profile of water vapor are strongly influencing on the BTD, which is as much as of about 50%. These results strongly suggest that the aerosol retrieval with the BTD method must be cautious and the outcomes must be carefully calibrated with respect to the sources of the error.

Estimation of Typhoon Center Using Satellite SAR Imagery (인공위성 SAR 영상 기반 태풍 중심 산정)

  • Jung, Jun-Beom;Park, Kyung-Ae;Byun, Do-Seong;Jeong, Kwang-Yeong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.502-517
    • /
    • 2019
  • Global warming and rapid climate change have long affected the characteristics of typhoons in the Northwest Pacific, which has induced increasing devastating disasters along the coastal regions of the Korean peninsula. Synthetic Aperature Radar (SAR), as one of the microwave sensors, makes it possible to produce high-resolution sea surface wind field around the typhoon under cloudy atmospheric conditions, which has been impossible to obtain the winds from satellite optical and infrared sensors. The Geophysical Model Functions (GMFs) for sea surface wind retrieval from SAR data requires the input of wind direction, which should be based on the accurate estimation of the center of the typhoon. This study estimated the typhoon centers using Sentinel-1A images to improve the problem of typhoon center detection method and to reflect it in retrieving the sea surface wind. The results were validated by comparing with the typhoon best track data provided by the Korea Meteorological Administration (KMA) and Japan Meteorological Agency (JMA), and also by using infrared images of Himawari-8 satellite. The initial center position of the typhoon was determined by using VH polarization, thereby reducing the possibility of error. The detected center showed a difference of 23.76 km on average with the best track data of the four typhoons provided by the KMA and JMA. Compared to the typhoon center estimated by Himawari-8 satellite, the results showed an average spatial variation of 11.80 km except one typhoon located near land with a large difference of 58.73 km. This result suggests that high-resolution SAR images can be used to estimate the center and retrieve sea surface wind around typhoons.

Development of Modeling and Simulation Tool for the Performance Analysis of Pods Mounted on Highly Maneuverable Aircraft (고기동 항공기 탑재 파드 성능 분석을 위한 모델링 및 시뮬레이션 도구 개발)

  • Lee, Sanghyun;Shin, Jinyoung;Lee, Jaein;Kim, Jongbum;Kim, Songhyon;Kim, Sitae;Cho, Donghyurn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.507-514
    • /
    • 2022
  • The EO/IR targeting pod mounted on a fighter to acquire information about tactical targets is typically mounted and operated at the bottom of the aircraft fuselage. Since the aircraft equipped with such an external attachment has complexed aerodynamic and inertial characteristics compared to the aircraft flying without an external attachment, a method of system performance analyses is required to identify development risk factors in the early stages of development and reflect them in the design. In this study, a development plan was presented to provide the necessary modeling and simulation tools to develop a pod that can acquire measurement data stably in a highly maneuverable environment. The limiting operating conditions of the pods mounted on the highly maneuverable aircraft were derived, the aerodynamics and inertial loads of the mounted pods were analyzed according to the limiting operating conditions, and a flight data generation and transmission system were developed by simulating the mission of the aircraft equipped with the mounted pods.

Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming (핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석)

  • Lee, Kyo-Moon;Park, Soo-Jeong;Park, Ye-Rim;Park, Seong-Jae;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.93-97
    • /
    • 2022
  • The application of infrared heating in the hot press forming of the thermoplastic composites is conducive to productivity with high-speed heating. However, high energy, high forming temperature, and high-speed heating derived from infrared heating can cause material degradation and deteriorate properties such as re-melting performance. Therefore, this study was conducted to optimize the process conditions of the hot press forming suitable for carbon fiber reinforced polyetherketoneketone(CF/PEKK) composites that are actively researched and developed as high-performance aviation materials. Specifically, the degradation mechanisms and properties that may occur in infrared high-speed heating were evaluated through morphological and thermal characteristics analysis and mechanical performance tests. The degradation mechanism was analyzed through morphological investigation of the crystal structure of PEKK. As a result, the size of the spherulite decreased as the degradation progressed, and finally, the spherulite disappeared. In thermal characteristics, the melting temperature, crystallization temperature and heat of crystallization tend to decrease as degradation progresses, and the crystal structure disappeared under long-term exposure at 460℃. In addition, the low bonding strength was observed on the degraded surface, and the bonding surfaces of PEKK did not melt intermittently. In conclusion, it was confirmed that the CF/PEKK composite material degraded at 420℃ in the infrared high-speed heating. Furthermore, the spherulite experienced morphological changes and the re-melting properties of thermoplastic materials were degraded.

A Real-time Correction of the Underestimation Noise for GK2A Daily NDVI (GK2A 일단위 NDVI의 과소추정 노이즈 실시간 보정)

  • Lee, Soo-Jin;Youn, Youjeong;Sohn, Eunha;Kim, Mija;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1301-1314
    • /
    • 2022
  • Normalized Difference Vegetation Index (NDVI) is utilized as an indicator to represent the vegetation condition on the land surface in various applications such as land cover, crop yield, agricultural drought, soil moisture, and forest disaster. However, satellite optical sensors for visible and infrared rays cannot see through the clouds, so the NDVI of the cloud pixel is not a valid value for the land surface. This study proposed a real-time correction of the underestimation noise for GEO-KOMPSAT-2A (GK2A) daily NDVI and made sure its feasibility through the quantitative comparisons with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and the qualitative interpretation of time-series changes. The underestimation noise was effectively corrected by the procedures such as the time-series correction considering vegetation phenology, the outlier removal using long-term climatology, and the gap filling using rigorous statistical methods. The correlation with MODIS NDVI was higher, and the difference was lower, showing a 32.7% improvement compared to the original NDVI product. The proposed method has an extensibility for use in other satellite products with some modification.

A Study on Transferring Cloud Dataset for Smoke Extraction Based on Deep Learning (딥러닝 기반 연기추출을 위한 구름 데이터셋의 전이학습에 대한 연구)

  • Kim, Jiyong;Kwak, Taehong;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.695-706
    • /
    • 2022
  • Medium and high-resolution optical satellites have proven their effectiveness in detecting wildfire areas. However, smoke plumes generated by wildfire scatter visible light incidents on the surface, thereby interrupting accurate monitoring of the area where wildfire occurs. Therefore, a technology to extract smoke in advance is required. Deep learning technology is expected to improve the accuracy of smoke extraction, but the lack of training datasets limits the application. However, for clouds, which have a similar property of scattering visible light, a large amount of training datasets has been accumulated. The purpose of this study is to develop a smoke extraction technique using deep learning, and the limits due to the lack of datasets were overcome by using a cloud dataset on transfer learning. To check the effectiveness of transfer learning, a small-scale smoke extraction training set was made, and the smoke extraction performance was compared before and after applying transfer learning using a public cloud dataset. As a result, not only the performance in the visible light wavelength band was enhanced but also in the near infrared (NIR) and short-wave infrared (SWIR). Through the results of this study, it is expected that the lack of datasets, which is a critical limit for using deep learning on smoke extraction, can be solved, and therefore, through the advancement of smoke extraction technology, it will be possible to present an advantage in monitoring wildfires.