• Title/Summary/Keyword: 저항력

Search Result 670, Processing Time 0.028 seconds

An analysis of the Behaviour of Uplift-Resisting Ground Anchors from Pull-out Tests (현장시험을 통한 부력앵커의 거동분석)

  • Lee, Cheolju;Jun, Sanghyun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • Engineering behaviour of uplift-resisting ground anchors constructed in weathered rocks has been investigated by carrying out a series of full scale pull-out tests. The anchor was to resist uplift forces (buoyancy) associated with high groundwater table acting on the basement of a rail way station. The study has included the ultimate pull-out capacity of the anchors and shear stress transfer mechanism at the anchor-ground interface. The pull-out tests were conducted by changing bonded lengths of the anchor (2~7 m) and diameter of drilled borehole (108~165 mm) to investigate their effects on the behaviour of the anchor. The measured results showed that the ultimate capacity of the anchors was increased with an increase in the bonded length, diameter of drilled borehole as expected. The ultimate capacity of the anchors deduced from the pull-out tests ranged from 392 to 1,569 kN, depending on the above-mentioned factors. This corresponds to the interface shear strength of about 227~505 kPa. Interface shear stresses deduced from the pull-out test showed that the larger the pull-out force, the larger the mobilisation of the interface shear strength. The failure mode of the anchors heavily depended on the bonded lengths of the anchors. When the bonded length was short (2~3 m), a cone-type failure was observed, whereas when the bonded length increased (5~7 m), failure developed at the grout-ground interface.

  • PDF

Horizontal Behavior Characteristics of Umbrella-Type Micropile Applied in Sandy Soil Subjected to Seismic Motion (사질토 지반에 설치된 우산형 마이크로파일의 지진 시 수평거동 특성)

  • Kim, Soo-Bong;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.5-16
    • /
    • 2020
  • Currently, the seismic design standards have been strengthened due to the occurrence of the Gyeongju and Pohang earthquake, and seismic performance evaluation of existing facilities is being conducted. It aims to secure a seismic performance effect during earthquakes by improving the micro-pile method, which can be constructed in limited confined places while minimizing damage to existing facilities. The improvement method is to construct all the piles in the square-tray-type plate on the top of the pile by constructing the slope pile in the form of an umbrella around the vertical pile, the main pillar. In this paper, the numerical analysis was performed to analyze the horizontal displacement behavior of an umbrella-type micropile for various real-measurement seismic waves in sandy soil. As a result of numerical analysis, the softer the ground, the better the effect of horizontal resistance of umbrella-type micropile. The horizontal displacement reduction effect was pronounced when the embedded depth was 15 m or more at the same ground strength, and it was found to be effective in earthquakes if it was settled on the ground with an N value of 30 or more. The embedded depth and horizontal displacement suppression effect of the micropile was proportional. Generally, the weaker the ground, the greater the displacement suppression effect. Umbrella-type micropile had a composite resistance effect in which the vertical pile resists the moment and inclined pile resists the axial force.

Pull-out Resistance Characteristics of the Anchor Bar According to the Grouting Material (주입재료에 따른 Anchor Bar의 인발저항 특성)

  • Yea, Geu-Guwen;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.227-232
    • /
    • 2008
  • In this study, the pull out resistance characteristics of an anchor bar to support a spillway installed in a slope are investigated by field tests. The injection materials were a cement mortar and cement milk. Unconfined compression strengths of those materials under several conditions were measured. As the result of compression test, the unconfined compression strengths of the cement mortar and the cement milk have positive proportional relation-ship with the water-cement ratio. They also have negative proportional relationship with increasing the curing time. In the same condition of water-cement ratio and curing time, the unconfined compression strength of cement milk is larger than that of cement mortar. In order to reduce the eccentricity in anchor bar during pull-out test in the field, the installation apparatus was improved by inserting a nut type of steel fixing coupling into the anchor bar. As the result of the pull-out test, the strength modification of cement milk was increased steeply at the early curing time. However, that of cement mortar was increased gradually with passing the curing time. Therefore, the cement milk has to use as the injection material for a prompt construction of anchor bar because the strength modification of cement milk is occurred at the early curing time.

Behavior of Walls of Open-cell Caissons Using Filler under Abnormally High Waves (고파랑 대비 채움재를 이용한 오픈 셀 케이슨의 전단 벽체 거동 분석)

  • Seo, Jihye;Won, Deokhee;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 2017
  • In order to cope with the abnormally high waves during the storm surge due to climate change, various methods have been proposed for interlocking adjacent caissons to enhance stability of harbor structures. Among the methods, it was studied the method based on an open-cell caisson having reduction effect increasing the cohesion with adjunction caissons by filling materials such as crushed rocks in an inter-cell formed by two facing open-cells which consist of transverse walls. It is necessary to investigate the shear behaviors of an inter-cell to secure the stability using calculating shear forces on inter-cell under oblique wave loadings. It was analyzed the shear force share ratio with the length of internal and external wall and the number of internal walls. Numerical results show that 60~70% of the shear load is transmitted to adjacent caisson through the internal walls, more than 30% is through the external wall. It was applicable in the assumption that filling materials was uniformly distributed in inter-cells, and further studies were worth consideration on other conditions under construction.

Evaluation of Hydraulic Stability Using Real Scale Experimental on Porous Concrete Revetment Block (다공성콘크리트 호안블록의 실규모 실험을 통한 수리안정성 평가)

  • Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.122-130
    • /
    • 2016
  • The past few decades of industrialization enabled human-centered stream developments, which in turn resulted in constructing straight or covered streams, which are used only for sewage disposal purpose. However, these types of streams have become the cause of flood damages such as localized heavy rain. In response, various construction methods have been implemented to prevent stream and embankment damages. However, regulations regarding these measures only lay out minimum standards such as the height of slopes and the minimum angle of inclination. Moreover, examination of tractive force, the most crucial factor in preventing flood damage, is nonexistent. Therefore, this study evaluates various tractive forces by implementing a porous concrete tetrapod at a full scale artificial stream for experiment, controlling the rate of inflow, and measuring the velocity and depth of the stream under different experiment conditions. The test results of the compressive strength, and porosity and density of rock of the porous concrete tetrapod was between 16.6 and 23.2 MPa, and the actual measurement of air void was 10.1%, thus satisfying domestic standard. The result of tractive force experiment showed a limiting tractive force of $47.202N/m^2$, not satisfying the tractive force scope of $67N/m^2$ the stream design working expertise proposes. However, there was neither damage nor loss of blocks and hardpan. Based on previous researches, it can be expected that there will be resistance against a stronger tractive force. Therefore, it is necessary to conduct another experiment on practical limiting tractive force by adjusting some experimental conditions.

Effect of Dietary Herb Medical Stuff on the Non-specific Immune Response of Nile Tilapia, Oreochromis niloticus (나일틸라피아, Oreochromis niloticus의 비특이적 면역반응에 대한 생약재 투여 효과)

  • Hwang, Mi-Hye;Park, Soo-Il;Kim, Yi-Cheong
    • Journal of fish pathology
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 1999
  • In order to investigate the immune response induced by supplementation of herb medical stuff in diet on the nile tilapia. Oreochromis niloticus, experiments were performed with feeding of four different experimental diets supplemented with 2% ginseng. Panax ginseng, 3% Kugija. Lycium chinense, 3% Hasuo, Polygonum multiflorum, 2% Omija, Schizandra chinensis, respectively, for 84 days. The non-specific immune responses changed during the feeding period were investigated at 2, 4, 6, 8, 10, 12 weeks in each group. Average body weight of the nile tilapia with supplemented diets was heavier than control group. The fish fed on diet supplemented with 3% Kugija showed the better growth than the other tested groups. Complement activity such as complete hemolytic activity ($CH_{50}$) and bactericidal activity against Escherichia coli tended to be increased by the supplementation of herb medical stuff. The lysozyme activity of serum and adherent phagocyte activity showed higher in the fish fec on diet supplemented with 3% kugija than the other tested groups. In respect to the RPS against experimental Edwardsiella tarda infection, all of the group fed on the herb medical stuff in diet appeared higher response compared with control group. From these results, herb medical stuff (Panax ginseng, Lycium chinense. Polygonum multiflorum, Schizandra chinensis) might be used a additives of diet for the increasing of non-specific immune response or resistance against bacterial fish diseases.

  • PDF

A Study on the summer mortality of Korean rockfish Sebastes schlegeli in Korea (하절기 조피볼락, Sebastes schlegeli의 대량폐사에 관한 고찰)

  • Choi, Hye-Sung;Myoung, Jeong-In;Park, Myoung-Ae;Cho, Mi-Young
    • Journal of fish pathology
    • /
    • v.22 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • The mass mortality of Korean rockfish, Sebastes schlegeli that occured at the fish farms in Tongyeong and Geoje City regions between late August and early September in 2006 was investigated. Sixty two fish showed no significant external symptoms except ulcerative lesions with reddish foci on the skin. From the internal observations and diagnosis results, some yellowish brown liver, intestine bleeding, atrophy and congestion in the abdominal cavity of the fish were found. In the gill, swelled filaments caused by foreign material accumulation and mucus secretion were observed. However, the main cause of the fish mass mortality in both sampling regions could be due to physiological weakness induced by significant change of water temperature causing by typhoon Wookong during the summer in 2006.

Deduction of Correlations between Shear Wave Velocity and Geotechnical In-situ Penetration Test Data (전단파속도와 지반공학적 현장 관입시험 자료의 상관관계 도출)

  • Sun, Chang-Guk;Kim, Hong-Jong;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • Shear wave velocity($V_S$), which can be obtained using various seismic tests, has been emphasized as representative geotechnical dynamic characteristic mainly for seismic design and seismic performance evaluation in the engineering field. For the application of conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests(SPT) and piezocone penetration tests(CPTu) together with a variety of borehole seismic tests were performed at many sites in Korea. Through statistical modeling of the in-situ testing data, in this study, the correlations between $V_S$ and geotechnical in-situ penetrating data such as blow counts(N value) from SPT and piezocone penetrating data such as tip resistance ($q_t$), sleevefriction($f_s$), and pore pressure ratio($B_q$) were deduced and were suggested as an empirical method to determine $V_S$. Despite the incompatible strain levels of the conventional geotechnical penetration tests and the borehole seismic tests, it is shown that the suggested correlations in this study are applicable to the preliminary estimation of $V_S$ for Korean soil layers.

Evaluation of Tractive Performance of an Underwater Tracked Vehicle Based on Soil-track Interaction Theory (궤도-지반 상호작용 이론을 활용한 해저궤도차량의 구동성능 평가)

  • Baek, Sung-Ha;Shin, Gyu-Beom;Kwon, Osoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.43-54
    • /
    • 2018
  • Underwater tracked vehicle is employed to perform underwater heavy works on saturated seafloor. When an underwater tracked vehicle travels on the seafloor, shearing action and ground settlement take place on the soil-track interface, which develops the soil thrust and soil resistance, respectively, and they restrict the tractive performance of an underwater tracked vehicle. Thus, unlike the paved road, underwater tracked vehicle performance does not solely rely on its engine thrust, but also on the soil-track interaction. This paper aimed at evaluating the tractive performance of an underwater tracked vehicle with respect to ground conditions (soil type, and relative density or consistency) and vehicle conditions (weight of vehicle, and geometry of track system), based on the soil-track interaction theory. The results showed that sandy ground and silty sandy ground generally provide sufficient tractions for an underwater tracked vehicle whereas tractive performance is very much restricted on clayey ground, especially for a heavy-weighted underwater tracked vehicle. Thus, it is concluded that an underwater tracked vehicle needs additional equipment to enhance the tractive performance on the clayey ground.

Evaluation of Soil Disturbance Due to Bucket Installation in Sand (모래지반에서 버켓기초 설치에 의한 지반교란 평가)

  • Kim, Jae-Hyun;Lee, Seung-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.21-31
    • /
    • 2018
  • Bucket foundations are widely used in offshore areas due to their various benefits such as easy and fast installations. A bucket is installed using self-weight and the hydraulic pressure difference across the lid generated by pumping out water from inside the bucket. When buckets are installed in high permeable soil such as sands, upward seepage flow occurs around the bucket tip and interior, leading to a decrease in the effective stress in the soil inside the buckets. This process reduces the penetration resistance of buckets. However, the soil inside and outside the bucket can be disturbed due to the upward seepage flow and this can change the soil properties around the bucket. Moreover, upward seepage flow can create significant soil plug heave, thereby hindering the penetration of the bucket to the target depth. Despite of these problems, soil disturbance and soil plug heave created by suction installation are not well understood. This study aims to investigate the behavior of soil during suction installation. To comprehend the phenomena of soil plug heave during installation, a series of small-scale model tests were conducted with different testing conditions. From a series of tests, the effects of tip thickness of bucket, penetration rate, and self-weight were identified. Finally, soil properties inside the bucket after installation were approximated from the measured soil plug heave.