• Title/Summary/Keyword: 저차 직교모드

Search Result 3, Processing Time 0.018 seconds

Modal Parameter Extraction of Seohae Cable-stayed Bridge : II. Natural Frequency and Damping Ratio (서해대교 사장교의 동특성 추출 : II. 고유진동수와 감쇠비)

  • Kim, Byeong Hwa;Park, Jong-Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.641-647
    • /
    • 2008
  • This paper introduces a new technique that can extract natural frequencies and damping ratios from output-only vibration data. Firstly, the free vibration data is obtained from the cross correlations of the output-only response data using a singular value decomposition process. Secondly, the well-known system identification algorithm is applied to extract the natural frequencies and damping ratios from the extracted free vibration data. Comparing to ERADC technique, the accuracy of the proposed modal parameter identification algorithm has been numerically examined. Furthermore, the practicability of the proposed algorithm has been examined through the output-only acceleration data collected from the Seohae cable-stayed bridge. Using the proposed technique, total 24 modes have been identified for the deck plate motions of the bridge.

Corresponding Points Estimation of Motion Images by Orthogonal Function Expansion (직교 함수 전개법에 의한 동영상의 대응점 추출)

  • 김진우;김경태
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.380-388
    • /
    • 2000
  • In computing the optical flow, Horn and Schunck's method which is a representative algorithm is based on differentiation. Therefore it is difficult to estimate the velocity for a large displacement by this algorithm. In this paper, we propose a method for estimating nonuniform motion from sequential images which is based on integral brightness constancy constraints. The equations which transform a source image to a target image are expressed as a function of the displacement field. If marginal effects can be neglected, the form of the transformation integral transform or orthogonal expansion can be determined from the expansion coefficients of the two images. The apparent displacement field is then computed iteratively by a projection method which utilities the functional derivatives of the linearized moment equations. We demonstrate that the performance of the orthogonal function transform on the data set of large motion.

  • PDF

Computational Methodology for Biodynamics of Proteins (단백질의 동적특성해석을 위한 전산해석기법 연구)

  • Ahn, Jeong-Hee;Jang, Hyo-Seon;Eom, Kil-Ho;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.476-479
    • /
    • 2008
  • Understanding the dynamics of proteins is essential to gain insight into biological functions of proteins. The protein dynamics is delineated by conformational fluctuation (i.e. thermal vibration), and thus, thermal vibration of proteins has to be understood. In this paper, a simple mechanical model was considered for understanding protein's dynamics. Specifically, a mechanical vibration model was developed for understanding the large protein dynamics related to biological functions. The mechanical model for large proteins was constructed based on simple elastic model (i.e. Tirion's elastic model) and model reduction methods (dynamic model condensation). The large protein structure was described by minimal degrees of freedom on the basis of model reduction method that allows one to transform the refined structure into the coarse-grained structure. In this model, it is shown that a simple reduced model is able to reproduce the thermal fluctuation behavior of proteins qualitatively comparable to original molecular model. Moreover, the protein's dynamic behavior such as collective dynamics is well depicted by a simple reduced mechanical model. This sheds light on that the model reduction may provide the information about large protein dynamics, and consequently, the biological functions of large proteins.

  • PDF