• Title/Summary/Keyword: 저장유기물 축적

Search Result 10, Processing Time 0.025 seconds

Dry Matter, Nitrogen Distribution and Organic Reserves Accumulation as Affected by Nitrate Supply Level in Alfalfa (Medicago sativa L.) (질산태 질소의 공급수준에 따른 알팔파의 건물, 질소의 분포 및 저장영양소의 축적)

  • Kim, Tae-Hwan;Jung, Woo-Jin;Lee, Bok-Rye;Kim, Dae-Hyun;Kim, Kil-Yong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.3
    • /
    • pp.153-160
    • /
    • 2002
  • To investigate the effects of the exogenous N $O_3$$^{[-10]}$ supply level on the nitrate assimilation and growth during the vegetative growth stage, and on the accumulation of organic reserves during the successive regrowth period, dry matter (DM), the amount of nitrogenous compounds, total N and starch in alfalfa plants grown hydroponically with 0.2, 1.0 and 3.0 mM KN $O_3$ was estimated, respectively, during vegetative growth period and two cycle of regrowth. When compared with DMs and N contents in various N compounds in the organs grown with 1.0 mM N $O_3$$^{[-10]}$ , N starvation symptoms were found in 0.2 mM and a depressive effect was observed in 3.0 mM after 10 weeks of vegetative growth. Total starch content in root system gown with 0.2, 1.0 and 3.0 mM N $O_3$$^{[-10]}$ during the first regrowth was 50.96, 15.47 and 6.37 mg plant$^{-1}$, respectively. Starch was contained mainly in taproots. The starch content was not significantly changed by 24 days of the second regrowth with 1.0 mM N $H_4$N0$_3$. Total nitrogen content in root system grown with 0.2, 1.0 and 3.0 mM N $O_3$$^{[-10]}$ during the first regrowth was 6.66, 8.43 and 11.09 mg plant$^{-1}$ , respectively. Nitrogen was contained mainly in lateral roots; 80% (in 0.2 mM), 74% (1.0 mM) and 76% (3.0 mM) of total nitrogen in root system. Total N content in root system at the end of the second regrowth also closely affected by the N $O_3$$^{[-10]}$ supply level during the first regrowth. These results suggest that the level of N $O_3$$^{[-10]}$ may strongly influence the accumulation of organic reserves in root system, and that the initial level of organic reserves for the successive regrowth was one of the determinants for shoot regrowth.

Evaluation of Carbon Sequestration Capacity of a 57-year-old Korean Pine Plantation in Mt. Taeh wa based on Carbon Flux Measurement Using Eddy-covariance and Automated Soil Chamber System (에디 공분산 및 자동화 토양챔버 시스템을 이용한 탄소 플럭스 관측 기반 태화산 57년생 잣나무조림지의 탄소흡수능력 평가)

  • Lee, Hojin;Ju, Hyungjun;Jeon, Jihyeon;Lee, Minsu;Suh, Sang-Uk;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.554-568
    • /
    • 2021
  • Forests are the largest carbon (C) sinks in terrestrial ecosystems. Recently, as enhancing forest C sequestration capacity has been proposed as a basic direction of the Republic of Korea's "2050 Carbon Neutral Strategy," accurate estimation of forest C sequestration has been emphasized. According to the Intergovernmental Panel on Climate Change guidelines, sequestration quantity is calculated from changes in C stocks in forest C pools, such as biomass, deadwood, litter and soil layer, and harvested wood products. However, in Korea, only the overstory biomass increase is now considered the amount of sequestration quantity, so there can be a significant difference from the actual forest C sequestration. In this study, we quantified forest C exchange through C flux measurement using an eddy covariance system and an automated soil chamber system in a 57-year-old Korean pine plantation located in Mt. Taehwa, Gwangju-si, Gyeonggi-do. Then, the net amount of C sequestration was compared with the amount of the overstory biomass increase. We estimated the annual C stock change in the remaining C pools by comparing the net sequestration amount from the C flux measurement with the overstory biomass increase and C stock change in the litter layer. Therefore, the net C sequestration of the Korean pine plantation estimated from the flux measurement was 5.96 MgC ha-1, which was about 2.2 times greater than 2.77 MgC ha-1 of the overstory biomass increase. The annual C stock increase in the litter layer was estimated to be 0.75 MgC ha-1, resulting in a total annual C stock increase of 2.45 MgC ha-1 in the remaining C pools. Our results indicate that the domestic forest is a larger C sink than the current methods, implying that more accurate calculations of the C sequestration capacity are necessary to quantify C stock changes in C pools along with the C flux measurement.

Productive Structure and energy Storage of the Delta of Nak Dong River (낙동강 하류 삼각주지역 갈대초지의 생산구조와 에너지저장에 관한 연구)

  • 장남기;강호감
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.3
    • /
    • pp.220-225
    • /
    • 1984
  • In the grassland ecosystem dominated by Phragmites longivalvis in the delta of Nak Dong River, the production, decomposition, and accumulation of organic were estimated by the theoretical analysis. The amounts of organic carbon and organic matter of litter are $1020.43g/m^2\;and\;591.90g/m^2$, respectively. The amounts of organic matter and organic carbon on the grassland floor is $1154.96g/m^2\;and\;669.93g/m^2$, the ratio of annual litter production 'L' to the amount of accumulation on the top mineral soil (F, H and $A_2$ horizons) provided estimates of decay constant k. Constant k is 0.884 in the Phragmites longivalvis community. The vertical levels of organic matter and organic carbon is the highest in 120-140 cm of photosythetic system and in 0-20 cm of non-photosyntic system.

  • PDF

Early Effect of Environment-friendly Harvesting on the Dynamics of Organic Matter in a Japanese Larch (Larix leptolepis) Forest in Central Korea (중부지역 일본잎갈나무림의 친환경벌채가 산림 내 유기물 변화에 미치는 초기 영향)

  • Wang, Rui Jia;Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.473-481
    • /
    • 2022
  • Environment-friendly harvesting is practiced to maintain ecosystem, landscape, and forest protection functions. The present study was conducted at Simgok-ri, Sinbuk-myeon, Pocheon, Gyeonngi-do, where a 41-50-year-old Japanese larch forest was harvested in an environment-friendly manner from 2017 to 2019. The dynamics of organic matter in this forest were investigated at three years after the harvest. Specifically, organic matter content was measured on the forest floor and in overstory biomass, litterfall, and soil up to 30 cm in depth from June 2020 to January 2021. Owing to the harvest, the amount of overstory biomass of the Japanese larch stands decreased from 142.22 to 44.20 t ha-1. On the forest floor, the amount of organic matter was 32.87 t ha-1 in the control plots and 23.34 t ha-1 in the harvest plots. Annual litterfall was 4.43 t ha-1 yr-1 in the control plots and 1.16 t ha-1 yr-1 in the harvest plots. Soil bulk density in the B horizon was 0.97 g cm-3 in the control plots and 1.06 g cm-3 i n the harvest plots. Soil organic matter content was 11.5% in the control plots and 12.8% in the harvest plots. The total amount of soil organic matter did not differ significantly between the control plots (245.21 t ha-1) and harvest plots (263.92 t ha-1), although the amount of soil organic matter tended to be higher in the harvest plots. The total amount of organic matter in the forest was estimated to be 406.48 t ha-1 in the control plots and 338.21 t ha-1 in the harvest plots. In the harvest plots, the ratio of aboveground organic matter decreased to 13.1% and soil organic matter increased to 78.0%, indicating that the distribution of organic matter changed significantly in these plots. Overall, the carbon accumulated in aboveground biomass was substantially reduced by environment-friendly harvesting, whereas the soil carbon level increased, which played a role in mitigating the reduction of system carbon in the forest. These results highlight one possible resolution for forest management in terms of coping with climate change. However, given that only three years of environment-friendly harvesting data were analyzed, further research on the dynamics of organic matter and tree growth is needed.

Effect of Carbonized Biomass Derived from Pruning on Soil Carbon Pools in Pear Orchard (배 과수원에서 전정가지 유래 탄화물 시용이 토양 탄소 축적에 미치는 영향)

  • Lee, Sun-il;Lee, Jong-sik;Kim, Gun-yeob;Choi, Eun-jung;Suh, Sang-uk;Na, Un-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.3
    • /
    • pp.159-165
    • /
    • 2016
  • BACKGROUND: Carbonized biomass is increasingly used as a tool of soil carbon sequestration. The objective of this study was to evaluate soil carbon storage to application of carbonized biomass derived from pear tree pruning.METHODS AND RESULTS: The carbonized biomass was a mobile pyrolyzer with field scale, which a reactor was operated about 400~500℃ for 5 hours. The treatments were consisted of a control without input of carbonized biomass and two levels of carbonized biomass inputs as 6.06 Mg/ha, C-1 and 12.12 Mg/ha, C-2. It was shown that the soil carbon pools were 49.3 Mg/ha for C-1, 57.8 Mg/ha for C-2 and 40.1 Mg/ha for the control after experimental periods. The contents of accumulated soil carbon pool were significantly (P < 0.001) increased with enhancing the carbonized biomass input amount. The slopes (1.496) of the regression equations are suggested that carbon storage from the soil was increased about 0.1496 Mg/ha with every 100 kg/ha of carbonized biomass input amount.CONCLUSION: Our results suggest that application of carbonized biomass would be increased the soil carbon contents due to a highly stable C-matrix of carbonized biomass. More long-term studies are needed to be proved how long does carbon stay in orchard soils.

Soil Carbon and Microbial Activity Influenced by Pasture and Rice Paddy Management (목초재배지 및 벼논 관리 변화에 따른 토양 탄소 및 미생물 활성도)

  • Yoo, Ga-Young;Kim, Hyun-Jin;Kim, Ye-Sol;Jung, Min-Hung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.435-443
    • /
    • 2012
  • This study investigated soil carbon storage and microbial activities influenced by different management practices in rice paddies and pastures. Soils under a single-crop farming of rice (CON) and rice-Italian ryegrass rotation farming (IRG) were compared in Jangheung, Jeollanam-do, Seocheon and Cheonan, Chungcheongnam-do. Soils from pastures were analyzed to investigate the effect of duration period (P1, P2, P3) in Namwon, Jeollabuk-do and Seosan, Chungcheongnam-do. In rice paddy, total and particulate carbon (PC) concentrations in the IRG soils were significantly higher than those in the CON soils both in Jangheung and Seocheon where the IRG has been established for three years, whereas carbon concentrations were not significantly different in Cheonan where IRG planting history is only one year. In rice paddy soils, PC was suggested as an early indicator to monitor changes in soil carbon storage followed by adopting different management practices. In pasture, total and PC concentrations increased with duration period especially in the 0-5 cm soils. Contrary to the rice paddy soils, the magnitude of change in PC concentration is not as great as that in total carbon concentration, implying that there is a need to develop a new early indicator other than PC using different fractionation scheme. The soil carbon storage in pasture also increased with years since establishment and the increasing rate was significantly greater in the early stage (0-5 yrs) than the later one (> 5 yrs). Microbial activities measured from fluorescein diacetate (FDA) hydrolysis analysis were significantly lower in the IRG soils than CON soils, whereas no difference was observed in the pastures of different ages. This shows that FDA activity is not a sensitive indicator to differentiate soil qualities influenced by management practices if it is used by itself.

Comparison of Soil Characteristics and Carbon Storage between Urban and Natural Lands - Case of Chunchon - (도심지와 자연지간 토양 특성 및 탄소저장량 비교 - 춘천시를 대상으로 -)

  • Jo, Hyun-Kil;Han, Gab-Soo
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • This study compared soil characteristics and carbon storage between urban and natural lands in Chunchon. Soil pH was lower in natural lands (5.0) than in urban lands (6.6), and therefore exchangeable cation was a little lower in natural lands. Organic matter and cation exchange capacity were respectively, 1.4 and 1.7 times higher in natural lands than in urban lands, while available $P_2O_5$ was about 3.2 times higher in urban lands. Organic carbon storage in soils averaged $24.8{\pm}1.6$ (standard error) t/ha in urban lands and $31.6{\pm}1.6t/ha$ in natural lands, 1.3 times greater than in urban lands. Annual carbon accumulation in soils of natural lands was 1.3 t/ha/yr (litterfall minus decomposition). The carbon storage in Chunchon' s soils equaled about 31% of annual carbon emission (245,590 t/yr).

  • PDF

Changes in Aboveground Biomass and Nutrient Accumulation of the Korean-pine (Pinus koraiensis) Plantation by Stand Age at kangwondo Province (강원도(江原道) 지방(地方) 잣나무 인공림(人工林)의 임령변화(林齡變化)에 따른 지상부(地上部) 현존량(現存量)과 양분축적(養分蓄積))

  • Yi, Myong-Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.276-285
    • /
    • 1998
  • The aboveground biomass and nutrient content (N, P, K, Ca and Mg) of Pinus koraiensis S. et Z., aged 9, 22, 34, 46, 66 years, were measured in the Experiment Forest of Kangwon National University of Kangwondo province. The site index of the stands ranged from 13.5 to 14.2. Allometric equations (logY=alogX+b, where Y, X is ovendry mass and DBH, respectively) relating dry weights of stem, branches and needles to diameter at breast height (DBH) were developed to estimate aboveground tree biomass. Total above ground tree biomass increased with stand age from $21.8t\;ha^{-1}$ in the 9-year-old stand to $130t\;ha^{-1}$ in the 66-Year-old stand. Aboveground biomass was allocated as follows : stem> branch > foliage, except for the 9-year-old stand which had a greater proportion of foliage biomass than branch biomass. As stand age increased, an increasing proportion of annual biomass increment was allocated to stems. The aboveground biomass of shrubs and herbs ranged from 0.4 to $3.9t\;ha^{-1}$ and from 0.05 to $0.6t\;ha^{-1}$, respectively. No relationship was found between aboveground understory biomass and stand age. The mass of woody debris and forest floor varied between 0.59 to $1.54t\;ha^{-1}$ and 6.0 to $21.63t\;ha^{-1}$, respectively. Nutrient accumulation in aboveground tree biomass increased with stand age and was in the order of N > Ca > K > P > Mg. Average rates of nutrients accumulation in biomass were greatest in the early stages of stand development, and less marked as stand aged. The nutrient concentrations in different tree components decreased in the order of needle > branch > stem. There were no detectable trends in nutrient content of the forest floor and mineral soils with stand age. Understory vegetation contributed little to the nutrient pool of these Korean pine ecosystems. Mineral soil contained the Breast proportion of nutrient capital of the various ecosystem compartments.

  • PDF

Microbial hydrogen production: Dark Anaerobic Fermentation and Photo-biological Process (미생물에 의한 수소생산: Dark Anaerobic Fermentation and Photo-biological Process)

  • Kim, Mi-Sun;Baek, Jin-Sook
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.393-400
    • /
    • 2005
  • Hydrogen($H_2$) as a clean, and renewable energy carrier will be served an important role in the future energy economy. Several biological $H_2$ production processes are known and currently under development, ranging from direct bio-photolysis of water by green algae, indirect bio-photolysis by cyanobacteria including the separated two stage photolysis using the combination of green algae and photosynthetic microorganisms or green algae alone, dark anaerobic fermentation by fermentative bacteria, photo-fermentation by purple bacteria, and water gas shift reaction by photosynthetic or fermentative bacteria. In this paper, biological $H_2$ production processes, that are being explored in fundamental and applied research, are reviewed.

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.