• Title/Summary/Keyword: 저자식별

Search Result 97, Processing Time 0.03 seconds

A Large-scale Test Set for Author Disambiguation (저자 식별을 위한 대용량 평가셋 구축)

  • Kang, In-Su;Kim, Pyung;Lee, Seung-Woo;Jung, Han-Min;You, Beom-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.455-464
    • /
    • 2009
  • To overcome article-oriented search functions and provide author-oriented ones, a namesake problem for author names should be solved. Author disambiguation, proposed as its solution, assigns identifiers of real individuals to author name entities. Although recent state-of-the-art approaches to author disambiguation have reported above 90% performance, there are few academic information services which adopt author-resolving functions. This paper describes a large-scale test set for author disambiguation which was created by KISTI to foster author resolution researches. The result of these researches can be applied to academic information systems and make better service. The test set was constructed from DBLP data through web searches and manual inspection, Currently it consists of 881 author names, 41,673 author name entities, and 6,921 person identifiers.

Disambiguation of Author Names Using Co-citation (동시인용정보를 이용한 동명이인 저자의 중의성 해소)

  • Kang, In-Su
    • Journal of Information Management
    • /
    • v.42 no.3
    • /
    • pp.167-186
    • /
    • 2011
  • Co-citation means that two or more studies are cited together by a later study. This paper deals with the relationship between co-citation and author disambiguation. Author disambiguation is to cluster same-name author instances into real-world individuals. Co-citation may influence author disambiguation in terms that two or more related research works performed by the same person may be co-cited by some later studies. This article describes automated steps to gather co-citation information from Google scholar, and proposes a new clustering algorithm to effectively integrate co-citation information with other author disambiguation features. Experiments showed that co-citation helps to improve the performance of author disambiguation.

Application of Machine Learning Techniques for Resolving Korean Author Names (한글 저자명 중의성 해소를 위한 기계학습기법의 적용)

  • Kang, In-Su
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.3
    • /
    • pp.27-39
    • /
    • 2008
  • In bibliographic data, the use of personal names to indicate authors makes it difficult to specify a particular author since there are numerous authors whose personal names are the same. Resolving same-name author instances into different individuals is called author resolution, which consists of two steps: calculating author similarities and then clustering same-name author instances into different person groups. Author similarities are computed from similarities of author-related bibliographic features such as coauthors, titles of papers, publication information, using supervised or unsupervised methods. Supervised approaches employ machine learning techniques to automatically learn the author similarity function from author-resolved training samples. So far however, a few machine learning methods have been investigated for author resolution. This paper provides a comparative evaluation of a variety of recent high-performing machine learning techniques on author disambiguation, and compares several methods of processing author disambiguation features such as coauthors and titles of papers.

Email Extraction and Utilization for Author Disambiguation (저자 식별을 위한 전자메일의 추출 및 활용)

  • Kang, In-Su
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.261-268
    • /
    • 2008
  • An author of a paper is represented as his/her personal name in a bibliographic record. However, the use of names to indicate authors may deteriorate recall and precision of paper and/or author search, since the same name can be shared by many different individuals and a person can write his/her name in different forms. To solve this problem, it is required to disambiguate same-name author names into different persons. As features for author resolution, previous studies have exploited bibliographic attributes such as co-authors, titles, publication information, etc. This study attempts to apply email addresses of authors to disambiguate author names. For this, we first handle the extraction of email addresses from full-text papers, and then evaluate and analyze the effect of email addresses on author resolution using a large-scale test set.

A Comparison of Author Name Disambiguation Performance through Topic Modeling (토픽모델링을 통한 저자명 식별 성능 비교)

  • Kim, Ha Jin;Jung, Hyo-jung;Song, Min
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2014.08a
    • /
    • pp.149-152
    • /
    • 2014
  • 본 연구에서는 저자명 모호성 해소를 위해 토픽모델링 기법을 사용하여 저자명을 식별 하였다. 기존의 토픽모델링은 용어 자질만을 고려하였지만 본 연구에서는 제 3의 메타데이터 자질을 활용하여 ACT(Author-Conference Topic Model) 모델과 DMR(Dirichlet-multinomial Regression) 토픽모델링을 대상으로 저자명 식별 성능을 평가, 비교하였다. 또한 수작업으로 저자 식별 작업을 한 데이터셋을 기반으로 저자 당 논문 수와 토픽 수에 차이를 두고 연구를 진행하였다. 그 결과 저자명 식별에 있어 ACT 모델보다 DMR 토픽모델링의 성능이 더 우수한 것을 알 수 있었다.

  • PDF

A Study on the Management of Name Identifier System for ISNI-based Data Integration (ISNI 기반 데이터 융합을 위한 저자식별체계 운용에 관한 연구)

  • Lee, Seungmin;Kwak, Seung-Jin;Oh, Sanghee;Park, Jin Ho
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.30 no.1
    • /
    • pp.29-51
    • /
    • 2019
  • Most fields of society have constructed and utilized various name identifier systems such and International Standard Name Identifier(ISNI), Open Researcher and Contributor ID(ORCID), and Interested Parties Information System(IPI) in order to uniquely identify individual authors and institutions and to associate them to data related to creative works. Although it might be inevitable to apply name identifier systems in the current data environment with rapid association and integration of data across fields, there are many problems to be addressed when utilizing those systems. In order to overcome these problems and construct better information ecological system by associating and linking data from various fields, this research analyzed advanced cases for data integration based on ISNI. Through the analysis, it suggested managemental refinements for efficiently utilizing ISNI in data integration and association.

A Study on Utilization of ORCID based Author Identifier at National Level (국가 차원의 ORCID 기반 저자 식별자 활용에 관한 연구)

  • Kim, Eun-Jeong;Noh, Kyung-Ran
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.3
    • /
    • pp.151-174
    • /
    • 2017
  • The diffusion of the internet, the advancement of ICT technology, and digital diffusion have facilitated the streamlining and acceleration of scholarly communication and speeding up research, and the paradigm of scholarly information dissemination is changing. This study introduces the ORCID, a unique author identifier, and examines the ORCID organization's activities, the advantages given to researchers and research institutes, and the membership status. In addition, this paper examines adoptions and utilizations of ORCID in major countries including USA, UK, Italy, and China. Based on this, this paper suggests the necessary considerations for utilizing ORCID in terms of governance, system elements, policy and institutional aspects in an effort to identify authors at national level.

Review of Author Name Disambiguation Techniques for Citation Analysis (인용분석에서의 모호한 저자명 식별을 위한 방법들에 관한 고찰)

  • Kim, Hyun-Jung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.23 no.3
    • /
    • pp.5-17
    • /
    • 2012
  • In citation analysis, author names are often used as the unit of analysis and some authors are indexed under the same name in bibliographic databases where the citation counts are obtained from. There are many techniques for author name disambiguation, using supervised, unsupervised, or semisupervised learning algorithms. Unsupervised approach uses machine learning algorithms to extract necessary bibliographic information from large-scale databases and digital libraries, while supervised approaches use manually built training datasets for clustering author groups for combining them with learning algorithms for author name disambiguation. The study examines various techniques for author name disambiguation in the hope for finding an aid to improve the precision of citation counts in citation analysis, as well as for better results in information retrieval.

A Method for Same Author Name Disambiguation in Domestic Academic Papers (국내 학술논문의 동명이인 저자명 식별을 위한 방법)

  • Shin, Daye;Yang, Kiduk
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.4
    • /
    • pp.301-319
    • /
    • 2017
  • The task of author name disambiguation involves identifying an author with different names or different authors with the same name. The author name disambiguation is important for correctly assessing authors' research achievements and finding experts in given areas as well as for the effective operation of scholarly information services such as citation indexes. In the study, we performed error correction and normalization of data and applied rules-based author name disambiguation to compare with baseline machine learning disambiguation in order to see if human intervention could improve the machine learning performance. The improvement of over 0.1 in F-measure by the corrected and normalized email-based author name disambiguation over machine learning demonstrates the potential of human pattern identification and inference, which enabled data correction and normalization process as well as the formation of the rule-based diambiguation, to complement the machine learning's weaknesses to improve the author name disambiguation results.

Author Graph Generation based on Author Disambiguation (저자 식별에 기반한 저자 그래프 생성)

  • Kang, In-Su
    • Journal of Information Management
    • /
    • v.42 no.1
    • /
    • pp.47-62
    • /
    • 2011
  • While an ideal author graph should have its nodes to represent authors, automatically-generated author graphs mostly use author names as their nodes due to the difficulty of resolving author names into individuals. However, employing author names as nodes of author graphs merges namesakes, otherwise separate nodes in the author graph, into the same node, which may distort the characteristics of the author graph. This study proposes an algorithm which resolves author ambiguities based on co-authorship and then yields an author graph consisting of not author name nodes but author nodes. Scientific collaboration relationship this algorithm depends on tends to produce the clustering results which minimize the over-clustering error at the expense of the under-clustering error. In experiments, the algorithm is applied to the real citation records where Korean namesakes occur, and the results are discussed.