To overcome article-oriented search functions and provide author-oriented ones, a namesake problem for author names should be solved. Author disambiguation, proposed as its solution, assigns identifiers of real individuals to author name entities. Although recent state-of-the-art approaches to author disambiguation have reported above 90% performance, there are few academic information services which adopt author-resolving functions. This paper describes a large-scale test set for author disambiguation which was created by KISTI to foster author resolution researches. The result of these researches can be applied to academic information systems and make better service. The test set was constructed from DBLP data through web searches and manual inspection, Currently it consists of 881 author names, 41,673 author name entities, and 6,921 person identifiers.
Co-citation means that two or more studies are cited together by a later study. This paper deals with the relationship between co-citation and author disambiguation. Author disambiguation is to cluster same-name author instances into real-world individuals. Co-citation may influence author disambiguation in terms that two or more related research works performed by the same person may be co-cited by some later studies. This article describes automated steps to gather co-citation information from Google scholar, and proposes a new clustering algorithm to effectively integrate co-citation information with other author disambiguation features. Experiments showed that co-citation helps to improve the performance of author disambiguation.
Journal of the Korean Society for information Management
/
v.25
no.3
/
pp.27-39
/
2008
In bibliographic data, the use of personal names to indicate authors makes it difficult to specify a particular author since there are numerous authors whose personal names are the same. Resolving same-name author instances into different individuals is called author resolution, which consists of two steps: calculating author similarities and then clustering same-name author instances into different person groups. Author similarities are computed from similarities of author-related bibliographic features such as coauthors, titles of papers, publication information, using supervised or unsupervised methods. Supervised approaches employ machine learning techniques to automatically learn the author similarity function from author-resolved training samples. So far however, a few machine learning methods have been investigated for author resolution. This paper provides a comparative evaluation of a variety of recent high-performing machine learning techniques on author disambiguation, and compares several methods of processing author disambiguation features such as coauthors and titles of papers.
An author of a paper is represented as his/her personal name in a bibliographic record. However, the use of names to indicate authors may deteriorate recall and precision of paper and/or author search, since the same name can be shared by many different individuals and a person can write his/her name in different forms. To solve this problem, it is required to disambiguate same-name author names into different persons. As features for author resolution, previous studies have exploited bibliographic attributes such as co-authors, titles, publication information, etc. This study attempts to apply email addresses of authors to disambiguate author names. For this, we first handle the extraction of email addresses from full-text papers, and then evaluate and analyze the effect of email addresses on author resolution using a large-scale test set.
Proceedings of the Korean Society for Information Management Conference
/
2014.08a
/
pp.149-152
/
2014
본 연구에서는 저자명 모호성 해소를 위해 토픽모델링 기법을 사용하여 저자명을 식별 하였다. 기존의 토픽모델링은 용어 자질만을 고려하였지만 본 연구에서는 제 3의 메타데이터 자질을 활용하여 ACT(Author-Conference Topic Model) 모델과 DMR(Dirichlet-multinomial Regression) 토픽모델링을 대상으로 저자명 식별 성능을 평가, 비교하였다. 또한 수작업으로 저자 식별 작업을 한 데이터셋을 기반으로 저자 당 논문 수와 토픽 수에 차이를 두고 연구를 진행하였다. 그 결과 저자명 식별에 있어 ACT 모델보다 DMR 토픽모델링의 성능이 더 우수한 것을 알 수 있었다.
Lee, Seungmin;Kwak, Seung-Jin;Oh, Sanghee;Park, Jin Ho
Journal of the Korean BIBLIA Society for library and Information Science
/
v.30
no.1
/
pp.29-51
/
2019
Most fields of society have constructed and utilized various name identifier systems such and International Standard Name Identifier(ISNI), Open Researcher and Contributor ID(ORCID), and Interested Parties Information System(IPI) in order to uniquely identify individual authors and institutions and to associate them to data related to creative works. Although it might be inevitable to apply name identifier systems in the current data environment with rapid association and integration of data across fields, there are many problems to be addressed when utilizing those systems. In order to overcome these problems and construct better information ecological system by associating and linking data from various fields, this research analyzed advanced cases for data integration based on ISNI. Through the analysis, it suggested managemental refinements for efficiently utilizing ISNI in data integration and association.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.28
no.3
/
pp.151-174
/
2017
The diffusion of the internet, the advancement of ICT technology, and digital diffusion have facilitated the streamlining and acceleration of scholarly communication and speeding up research, and the paradigm of scholarly information dissemination is changing. This study introduces the ORCID, a unique author identifier, and examines the ORCID organization's activities, the advantages given to researchers and research institutes, and the membership status. In addition, this paper examines adoptions and utilizations of ORCID in major countries including USA, UK, Italy, and China. Based on this, this paper suggests the necessary considerations for utilizing ORCID in terms of governance, system elements, policy and institutional aspects in an effort to identify authors at national level.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.23
no.3
/
pp.5-17
/
2012
In citation analysis, author names are often used as the unit of analysis and some authors are indexed under the same name in bibliographic databases where the citation counts are obtained from. There are many techniques for author name disambiguation, using supervised, unsupervised, or semisupervised learning algorithms. Unsupervised approach uses machine learning algorithms to extract necessary bibliographic information from large-scale databases and digital libraries, while supervised approaches use manually built training datasets for clustering author groups for combining them with learning algorithms for author name disambiguation. The study examines various techniques for author name disambiguation in the hope for finding an aid to improve the precision of citation counts in citation analysis, as well as for better results in information retrieval.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.28
no.4
/
pp.301-319
/
2017
The task of author name disambiguation involves identifying an author with different names or different authors with the same name. The author name disambiguation is important for correctly assessing authors' research achievements and finding experts in given areas as well as for the effective operation of scholarly information services such as citation indexes. In the study, we performed error correction and normalization of data and applied rules-based author name disambiguation to compare with baseline machine learning disambiguation in order to see if human intervention could improve the machine learning performance. The improvement of over 0.1 in F-measure by the corrected and normalized email-based author name disambiguation over machine learning demonstrates the potential of human pattern identification and inference, which enabled data correction and normalization process as well as the formation of the rule-based diambiguation, to complement the machine learning's weaknesses to improve the author name disambiguation results.
While an ideal author graph should have its nodes to represent authors, automatically-generated author graphs mostly use author names as their nodes due to the difficulty of resolving author names into individuals. However, employing author names as nodes of author graphs merges namesakes, otherwise separate nodes in the author graph, into the same node, which may distort the characteristics of the author graph. This study proposes an algorithm which resolves author ambiguities based on co-authorship and then yields an author graph consisting of not author name nodes but author nodes. Scientific collaboration relationship this algorithm depends on tends to produce the clustering results which minimize the over-clustering error at the expense of the under-clustering error. In experiments, the algorithm is applied to the real citation records where Korean namesakes occur, and the results are discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.