• Title/Summary/Keyword: 저온열원

Search Result 72, Processing Time 0.025 seconds

국내 태양열 냉난방시스템 겸용 설치사례

  • Yun, Jang-Su;Jo, Jang-Hyeon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.40 no.5
    • /
    • pp.18-24
    • /
    • 2011
  • 태양열 집열기에서 생산된 열원을 축열한 축열조의 온수를 겨울에는 직,간접 열교환을 통하여 난방을 실현하고 축열조의 여름에는 흡수식 냉동기 발생기(Generator)에 공급하여 흡수식 냉동기를 가동하고 냉동기에서 생산된 저온의 냉수로 냉방을 실현하는 태양열 냉난방 겸용시스템에 대한 설치 사례를 소개하고자 한다.

  • PDF

Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a (저온 열원 HFC-134a 유기랭킨사이클의 출력 극대화)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • In this study, an organic Rankine-cycle system using HFC-134a, which is a power cycle corresponding to a low-temperature heat source, such as that for geothermal power generation, was investigated from the view point of power optimization. In contrast to conventional approaches, the heat transfer and pressure drop characteristics of the working fluid within the heat exchangers were taken into account by using a discretized heat exchanger model. The inlet flow rates and temperatures of both the heat source and the heat sink were fixed. The total heat transfer area was fixed, whereas the heat-exchanger areas of the evaporator and the condenser were allocated to maximize the power output. The power was optimized on the basis of three design parameters. The optimal combination of parameters that can maximize power output was determined on the basis of the results of the study. The results also indicate that the evaporation process has to be optimized to increase the power output.

Comparative Performance Analysis of Ammonia-Water Rankine Cycle and Kalina Cycle for Recovery of Low-Temperature Heat Source (저온 열원 발전을 위한 암모니아-물 랭킨 사이클과 칼리나 사이클의 성능특성의 비교 해석)

  • KIM, KYOUNGHOON;BAE, YOOGEUN;JUNG, YOUNGGUAN;KIM, SEWOONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.148-154
    • /
    • 2018
  • This paper presents a comparative analysis of thermodynamic performance of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the characteristics of the system. Results show that maximum net power can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better net power and thermal efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.

Performance Analysis of Kalina Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Energy Source (저온 열원 활용을 위한 암모니아-물 혼합물을 작동유체로 하는 칼리나 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Se-Woong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.109-117
    • /
    • 2011
  • Since the thermal performance of cycles for use of low-temperature source is low if a pure working fluid is used, the cycles using ammonia-water binary mixture as a working fluid has attracted much attention over past two decades. Recently, several commercial power plants using Kalina cycles have been built and being operated successfully. In this work thermodynamic performance of Kalina cycles using ammonia-water mixture as a working fluid is investigated for the purpose of extracting maximum power from low-temperature energy source. Special attention is paid to the effect of system parameters such as concentration of ammonia and turbine inlet pressure on the characteristics of the system. Results show that the system performance is influenced sensitively by the ammonia concentration, and the role of the performance of heat exchangers is crucial.

Performance Analysis of Ammonia-Water Regenerative Rankine Cycles for Use of Low-Temperature Energy Source (저온 열원 활용을 위한 암모니아-물 재생 랭킨 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Han, Chul-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • It is a great interest to convert more energy in the heat source into the power and to improve the efficiency of power generating processes. Since the efficiency of power generating processes becomes poorer as the temperature of the source decreases, to use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of the system. In this work performance of ammonia-water regenerative Rankine cycle is investigated for the purpose of extracting maximum power from low-temperature waste heat in the form of sensible energy. Special attention is paid to the effect of system parameters such as mass fraction of ammonia and turbine inlet pressure on the characteristics of system. Results show that the power output increases with the mass fraction of ammonia in the mixture, however workable range of the mass fraction becomes narrower as turbine inlet pressure increases and is able to reach 16.5kW per unit mass flow rate of source air at $180^{\circ}C$.

Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation (저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • In this study, an absorption power cycle, which can be used for a low-temperature heat source driven power cycle such as geothermal power generation, was investigated and optimized in terms of power by the simulation method. A steady-state simulation model was adopted to analyze and optimize its performance. Simulations were carried out for the given heat source and sink inlet temperatures, and the given flow rates were based on the typical power plant thermal-capacitance-rate ratio. The cycle performance was evaluated for two independent variables: the ammonia fraction at the separator inlet and the maximum cycle pressure. Results showed that the absorption power cycle can generate electricity up to about 14 kW per 1 kg/s of heat source when the heat source temperature, heat sink temperature, and thermal-capacitance-rate ratio are $100^{\circ}C$, $20^{\circ}C$, and 5, respectively.

Study on Organic Rankine Cycle (ORC) for Maximum Power Extraction from Low-Temperature Energy Source (저온 열원으로부터 최대 동력을 생산하기 위한 유기랭킨사이클(ORC)에 관한 연구)

  • Kim, Kyoung-Hoon;Han, Chul-Ho;Kim, Gi-Man
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.73-79
    • /
    • 2011
  • ORC(organic Rankine cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. This work analyzes performance of ORC with superheating using low-temperature energy sources in the form of sensible energy. Maximum mass flow rate of a working fluid relative to that of a source fluid is considerd to extract maximum power from the sources. Working fluids of R134a, $iC_4H_{10}$ and $C_6C_6$, and source temperatures of $120^{\circ}C$, $200^{\circ}C$ and $300^{\circ}C$ are considered in this work. Results show that for a fixed source temperature thermal efficiency increases with evaporating temperaure, however net work per unit mass of source fluid has a maximum with respect to the evaporating temperature in the range of low source temperature. Results also show that the maximum power extraction is possible with R134a for the source temperature of $120^{\circ}C$, with $iC_4H_{10}$ for $200^{\circ}C$, and with $C_6C_6$ for $300^{\circ}C$.

Process Design and Economic Evaluation of Condensate Recycling Process for Steam Consumption Reduction (스팀 사용 저감을 위한 응축수 재활용 공정설계 및 경제성 평가)

  • Kim, Jinuk;Choi, Yeongryeol;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.660-667
    • /
    • 2020
  • This study focused on the epoxy resin production process, which uses the steam of 155 ℃ or higher as a heat source, and discards all condensate generated. A part of the process is operated at low temperatures of 70 ℃ or below, thus there are opportunities to reduce the steam consumption by recycling wasted condensate as a heat source for the low temperature section of process. In this study, we developed process models that can reduce steam by recovering waste heat through recycling condensate and conducted a case study to find an optimal condensate recycling system. Three different process designs were proposed and economic evaluations were performed by comparing annual capital costs and steam savings in each case. Finally, an annual steam consumption of the low-temperature section could be reduced by up to 67.6%, which could also bring an additional economic benefit of 522.1 million won/yr.

Non-Fourier 열전달에 대한 소고

  • 김우승
    • Journal of the KSME
    • /
    • v.31 no.8
    • /
    • pp.735-744
    • /
    • 1991
  • 확산모델과 파모델의 결과에 있어 큰 차이가 일어나는 경우를 요약하면 다음과 같다. 1) 과도기 간이 짧다. 2) 작동온도가 아주 낮다. 3) 온도구배가 상당히 크다. 이때3)의 경우는 서로 다른 물질들이 접촉된 경우 또는 높은 열유속이 있는 경우 또는 얇은 표면층 등을 갖는 문제들의 공 통적인 특징이다. Non-Fourier 열전도 문제를 이용해 온도 분포를 예측해야 하는 실제적인 몇 가지 예를 살펴 보면 레이저 기술 또는 절대온도 영(zero)에 접근하는 온도에서의 액체 헬륨을 다루는 저온공학연구 또는 1/$10^{6}$Inch 정도의 표면조도가 관심사인 정밀공학 등을 들 수 있다. 또한 상당히 높은 강도의 열원이 작용될 때 고체에서의 크랙이나 보이드(void) 같은 국소 결함은 확산거동이 나타나기에 요구되는 시간보다 짧은 시간 구간에서 발생되어질 수 있으며, 크랙발생의 방향과 같은 것들은 hyperbolic 모델에의해 예측되어져야만 한다. 특히 움직이는 열원 또는 propagating crack tip을 갖는 경우에 그들 주위에서의 온도장을 규정짓는 가장 중요한 변 수는 열마하수 M이며, 아음속에서 초음속 영역으로 천이될 때 물리적 양들의 변화에 있어서 일어나는 현상들은 열충격의 형성에 기인하는데 이러한 현상들은 확산 모델로서는 예측될 수 없는 특징들이다. 이상에서 살펴볼 때 non-Fourier 모델에 대해 관심을 기울일 필요가 있다고 사료된다.

  • PDF

Performance Analysis of a Combined Cycle of Kalina and Absorption Refrigeration for Recovery of Low-Temperature Heat Source (저온 열원의 활용을 위한 칼리나/흡수냉동 복합사이클의 성능 해석)

  • KIM, KYOUNG HOON;KO, HYUNG JONG;JUNG, YOUNG GUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.490-496
    • /
    • 2018
  • Recently, the power and refrigeration cogeneration based on Kalina cycle has attracted much attention for more efficient utilization of low-grade energy. This study presents a thermodynamic performance analysis of a cogeneration cycle of power and absorption refrigeration based on Kalina cycle. The cycle combines Kalina cycle (KCS-11) and absorption cycles by adding a condenser and an evaporator between turbine and absorber. The effects of ammonia mass fraction and separation pressure were investigated on the system performance of the system. Results showed that the energy utilization of the system could be greatly improved compared to the basic Kalina cycle.