• Title/Summary/Keyword: 저온분사코팅

Search Result 23, Processing Time 0.025 seconds

Crevice Corrosion Evaluation of Cold Sprayed Copper (저온분사코팅구리의 틈새부식 특성 평가)

  • Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.247-260
    • /
    • 2010
  • The developement of a HLW disposal canister is under way in KAERI using Cold Spray Coating technique. To estimate corrosion behavior of a cold sprayed copper, a creivice corrosion test was conducted at Southwest Research Institute(SWRI) in the United State. For the measurement of repassivation potential needed for crevice corrosion, three methods such as (1) ASTM G61-86 : Cyclic Potentiodynamic Polarization Measurements, (2) Potentiodynamic Polarization plus intermediate Potentiostatic Hold method, and (3) ASTM G192-08 (THE method) : Potentiodynamic- Galvanostatic-Potentiostatic Method, were introduced in this report. In the crevice corrosion test, the occurrence of corrosion at crevice area was optically determined and the repassivation potentials were checked for three kind of copper specimens in a simulated KURT underground water, using a crevice former dictated in ASTM G61-86. The applied electrochemical test techniques were cyclic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy. As a result of crevice corrosion tests, every copper specimens including cold sprayed one did not show any corrosion figure on crevice areas. And the open-cell voltage, at which corrosion reaction initiates, was influenced by the purity of copper, but not their manufacturing method in this experiment. Therefore, it was convinced that there is no crevice corrosion for the cold sprayed copper in KURT underground environment.

광폭 노즐을 사용한 저온분사 공정시 분사 기판면에서의 입자속도분포 예측

  • Park, Hye-Yeong;Park, Jong-In;Jeong, Hun-Je;Han, Jeong-Hwan;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.55.2-55.2
    • /
    • 2010
  • 기존의 thermal spray coating은 분사시 가스와 입자가 높은 열을 동반하여 상대적으로 차가운 기판과의 충돌되는 과정에서 기판과 입자 사이에 열응력이 발생하게 되고, 이것은 코팅 특성을 저하시킨다. 또한 고온의 가연성 가스등의 사용으로 작업 시 안전문제 등의 단점이 있었다. 이러한 단점을 보완하기 위하여 분사 시 운동에너지를 주로 이용하는 cold spray coating 공정이 개발되었다. 이 공정은 코팅 입자를 임계속도 이상으로 가속시켜 입자와 기판이 충돌시 소성 변형을 통해 적층되는 코팅기술이다. Cold spray coating공정은 상온 코팅이 가능하기 때문에 주입입자의 물성이 비교적 그대로 유지되고, 고온의 열로 인한 기판의 변질을 막을 수 있다. Cold Spray coating에서 주로 원형 노즐을 사용하나 본 연구에서는 분사 효율 향상을 위한 광폭노즐을 사용하여 코팅 시간 단축을 기대하고 있다. 임계속도 이상의 입자 확보를 위하여 노즐의 expansion ratio와 노즐 shape의 변화를 주어 그에 따른 노즐내의 유동장을 수치해석을 통해 계산하였다. 분사되는 출구면과 기판 사이의 입자 속도 분포를 해석하였고, 이를 통해 임계속도 이상의 속도를 갖는 유효 입자들의 분포 및 유효 분사 면적을 예측하였다. 또한, 기존의 원형 노즐과 광폭 노즐과의 유동장 비교 및 각 노즐 분사면을 분석하여 cold spray coating공정에서의 효율적인 노즐 형상을 디자인하였다.

  • PDF

Lamination of Dielectric Layers by High Pressure Spray Coating for LTCC (고압 스프레이 코팅법에 의한 저온동시소성세라믹(LTCC) 유전체 층의 적층방법)

  • Lee, Jee-Hee;Kim, Young-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.33-38
    • /
    • 2006
  • Aerosol slurry composed of dielectric materials, distilled water, and deflocculants was sprayed on the substrates, through a high-pressure spray gun as an aerosol. The coated layers were cofired together with $Al_{2}O_{3}$ substrates and green sheets on which the inner connectors were printed. Although the coating rate of coated layers strongly depended on slurry viscosity, spray shape, and the pressure of the spray gun, the coated density was not changed. Buried conductors were maintained as printed by high pressure spray coating method, because the pressing process was not used. At the optimum condition of air controller step 3-4 and slurry viscosity c.p 2000-4000, dense and uniform layers could be achieved. Comparing with conventional lamination process using green sheets, spray coating method enabled thin dielectric layers of $20{\sim}50{\mu}m$.

  • PDF

Characteristics of Ni-coated diamond/Metal Composite Coatings by Cold Spray Deposition (니켈 코팅된 다이아몬드/금속 복합재의 저온분사 코팅특성)

  • Jung, Dong-Jin;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.550-557
    • /
    • 2009
  • In this study, bronze or SUS304 powders blended with 10 wt.% diamond particles were used to prepare metal/diamond composite materials deposited by cold spraying. The effects of matrix metal, diamond partical size, and the thickness of the Ni coating on the diamond were studied on Al 6061 substrate. The results showed that the hardness of the metal/diamond composite coating layers was higher than that of the same composite materials when using the sintering method. The fraction of diamond content in the coated layer increased when the metal matrix was soft. When the size of the diamond particles was reduced, the fraction of the diamond particles increased. In addition, in the case of diamond with a thicker Ni-coated layer, the fracturing of diamonds was mitigated in the composite coating layers.

Spray Coating Technology (스프레이 코팅 기술)

  • Lee, Chang-Hee
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

Deposition Behavior and Properties of Carbon Nanotube Aluminum Composite Coatings in Kinetic Spraying Process (탄소 나노튜브 알루미늄 복합재료 저온 분사 코팅의 적층 거동 및 특성)

  • Kang, Ki-Cheol;Xiong, Yuming;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon nanotube (CNT) aluminum composite coatings were built up through kinetic spraying process. Deposition behavior of CNT aluminum composite on an aluminum 1050 alloy substrate was analyzed based on deposition mechanism of kinetic spraying. The microstructure of CNT aluminum composite coating were observed and analyzed. Also, the electrical resistivity, bond strength and micro-hardness of the CNT aluminum composite coatings were measured and compared to kinetic sprayed aluminum coatings. The CNT aluminum composite coatings have a dense structure with low porosity. Compared to kinetic sprayed aluminum coating, the CNT aluminum composite coatings present lower electrical resistivity and higher micro-hardness due to high electrical conductivity and dispersion hardening effects of CNTs.

A Study on Residual Stress Reduction Effect of Cold Spray Coating to Improve Stress Corrosion Cracking of Stainless Steel 304L and 316L Welds (STS304L 및 STS316L 용접부의 응력 부식 균열 개선을 위한 저온 분사 코팅의 잔류 응력 감소 효과에 대한 연구)

  • Kwang Yong Park;Deog Nam Shim;Jong Moon Ha;Sang Dong Lee;Sung Woo Cho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • A Chloride-induced stress corrosion cracking (CISCC) of austenite stainless steel in dry cask storage system (DCSS) can occur with extending service time than originally designed. Cold spray coating (CSC) not only form a very dense microstructure that can protect from corrosive environments, but also can generate compressive stress on the surface. This characteristic of CSC process is very helpful to increase the resistance for CISCC. CSC with several powders, such as 304L, 316L and Ni can be optimized to form very dense coating layer. In addition, the impact energy generated as the CSC powder collides with the surface of base metal at a speed of Mach 2 or more can remove the residual tensile stress of welding area and serve the compress stress. CSC layers include no oxidation and no contamination with under 0.2% porosity, which is enough to protect from the penetration of corrosive chloride. Therefore, the CSC coating layer can be accompanied by a function that can be disconnected from the corrosive environment and an effect of improving the residual stress that causes CISCC, so the canister's CISCC resistance can be increased.

Effect of Carrier Gases on the Microstructure and Properties of Ti Coating Layers Manufactured by Cold Spraying (저온 분사 공정으로 제조된 Ti 코팅층의 미세조직 및 물성에 미치는 송급 가스의 영향)

  • Lee, Myeong-Ju;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.24-32
    • /
    • 2013
  • The effect of carrier gases (He, $N_2$) on the properties of Ti coating layers were investigated to manufacture high-density Ti coating layers. Cold spray coating layers manufactured using He gas had denser and more homogenous structures than those using $N_2$ gas. The He gas coating layers showed porosity value of 0.02% and hardness value of Hv 229.1, indicating more excellent properties than the porosity and hardness of $N_2$ gas coating layers. Bond strengths were examined, and coating layers manufactured using He recorded a value of 74.3 MPa; those manufactured using $N_2$ gas had a value of 64.6 MPa. The aforementioned results were associated with the fact that, when coating layers were manufactured using He gas, the powder could be easily deposited because of its high particle impact velocity. When Ti coating layers were manufactured by the cold spray process, He carrier gas was more suitable than $N_2$ gas for manufacturing excellent coating layers.