• Title/Summary/Keyword: 저속충격특성

Search Result 68, Processing Time 0.032 seconds

Comparative Study on Low-velocity Impact Behavior of Graphite/Epoxy Composite laminate and Steel Plate (탄소/에폭시 복합재 적층판과 강판의 저속충격 거동에 관한 비교 연구)

  • Kong, Chang-Duk;Kim, Yeong-Gwang;Lee, Seung-Hyeon
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • This study was performed to make a comparison on low-velocity impact behavior between graphite/epoxy composite laminate and steel plate. In order to validate the proposed scheme fur the impact behavior of the plate, the Karas's impact model was used. The impact models for this comparative study are the graphite/epoxy composite plate having $[0/90/45/-45/-45/45/90/0]_{8S}$ laminate sequence and the steel plate with a steel ball impactor. The low-velocity impact behaviors for two types of plates were comparatively investigated and performed by considering different impactor velocities and weights respectively. In this investigation, it was found that the composite laminate has impact energy absorption effect due to more flexible behavior than the steel plate, and also it has better characteristics on impact damage and weight.

Low Velocity Impact Monitoring for a Composite Sandwich Beam Using Piezo Thin Film Sensors (압전필름센서를 이용한 복합재 샌드위치 보의 저속충격 모니터링)

  • Park, Chan Ik;Lee, Gwan Ho;Kim, In Geol;Lee, Yeong Sin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2003
  • The piezoelectric thin film(PVDF: polyvinylidene fluoride) sensors having good dynamic sensing charachteristics can be used to monitor low vwlocit impact on composite structures. The impact response function for composite sandwich beam was derved. The impact tests at low energy without inducing damage were performed on the instrumented drop weight impact tester. The measured signals of PVDF sensors attached on the surface of the beam agreed well with the simulated signals. And the inverse technique was applied to reconstruct the impact forces from the PVDF sensor signals. Most of reconstructed impact forces showed good agreement with the measured forces. The comparison results showed that the piezoelectric thin film sensor can be used to monitor the low velocity impact on composite sandwich structures.

Evaluation of the Residual Strength of CFRP Composite Pressure Vessel After Low Velocity Impact (CFRP 복합재압력용기의 충격후 잔류강도저하특성 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Hwang, Tae-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.439-442
    • /
    • 2009
  • In this study, the residual strength of CFRP filament winding pressure vessel after low velocity impact was evaluated quantitatively. After impact test, the pressure vessel was sectioned to produce 25 mm-wide ring specimen and the bursting pressure of this specimen was measured. A finite element model was also fabricated to investigate the deformation and stress distribution characteristics of the impacted CFRP vessel. The degradation of the residual strength along with the increase of impact energy was successfully measured and reviewed.

  • PDF

Evaluation of the Absorbing Performance of Radar-absorbing Structure with Periodic Pattern after the Low-velocity Impact (주기패턴 레이더 흡수 구조의 저속충격 후 흡수 성능 평가)

  • Joon-Hyung, Shin;Byeong-Su, Kwak
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.469-476
    • /
    • 2022
  • In this paper, the microwave absorbing characteristics after the impact of the radar-absorbing structure (RAS) consisting of periodic pattern sheet (PPS) and glass fiber-reinforced plastic (GFRP) were experimentally investigated. The fabricated RAS effectively absorbed the microwave in the X-band (8.2-12.4 GHz). In order to induce the damage to the RAS, a low-velocity impact test with various impact energy of 15, 40, and 60 J was conducted. Afterward, the impact damage was observed by using visual inspection, non-destructive test, and image processing method. Moreover, the absorbing performance of intact and damaged RAS was measured by the free-space measurement system. The experiment results revealed that the delamination damage from the impact energy of 15 J did not considerably affect the microwave absorbing performance of the RAS. However, fiber breakage and penetration damage with a relatively large damaged area were occuured when the impact energy was increased up to 40 J and 60 J, and these failures significantly degraded the microwave absorbing characteristics of the RAS.

Low velocity Impact Characteristics of Non-flamable Composite Laminates (난연성 복합적층재의 저속충격특성)

  • 김재훈;김후식;조정미;박병준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.179-182
    • /
    • 2001
  • Impacter tester was build of to evaluate the characterization of non-flamable Glass/phenol laminate plates under the low velocity impact. The damage of composite laminates are matrix cracking, delamination, and fiber breakage for impact energy. In this study, this is to find impact properties of Glass/phenol in used in a forehead part of lighting subway. To determine impact damage characteristics which is made in a laminate, use the UT C-scan after- macrography. And then evaluated the reduction of strength in a rate of impact energy with CAI(Compression After Impact) test

  • PDF

Study on the Characteristics of Wavelet Decomposed Details of Low-Velocity Impact Induced AE Signals in Composite Laminaes (저속충격에 의해 발생한 복합적층판 음향방출신호의 웨이블릿 분해 특성에 관한 연구)

  • Bang, Hyung-Joon;Kim, Chun-Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2009
  • Because the attenuation of AE signal in composite materials is relatively higher than that of metallic materials, it is required to develop a damage assessment technique less affected by the attenuation property of composite materials in order to use AE sensing as a damage detection method. In the signal processing procedure, it is profitable to use the leading wave that arrives first because the leading wave is less influenced by the boundary conditions. Using wavelet transform, we investigated the frequency characteristics of impact induced AE signals focused on the leading wave in advance and chose the key factors to discriminate the damaged condition quantitatively. In this research, we established a damage assessment technique using the sharing percentage of the wavelet detail components of AE signal, and conducted a low-velocity impact test on composite laminates to confirm the feasibility of the proposed signal processing method.

A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles (충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Dae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.

A Study on the Penetration Characteristics of the Rigid Impactor into the Lead Target (강체 충격자가 납 표적에 충돌할 때의 침투특성 연구)

  • 이영신;강근희;최병두;박관진;정수경;오종수
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.147-154
    • /
    • 1998
  • 강체 충격자가 납 표적에 33m/s ∼ 141m/s의 속도로 충돌할 때의 침투특성을 연구하기 위하여 Jognson 이론식을 이용한 이론해석과 AUTODYN 코드를 이용한 수치해석 및 실험장치를 이용한 실험측정을 실시하고 그 결과들을 비교 분석하였다. 실험장치로는 가스압력식 발사장치를 설계 제작하였으며, 실험용 충격자로는 충돌부위 형상이 반구형인 반구형 충격자와 원추형인 원추형 충격자 2종류를 사용하였다. 또한, 납재료에 대한 동적 유동응력을 얻기 위하여 홉킨스 압력봉실험을 수행하였다. 침투특성에 관한 연구결과, 이론적 해석결과는 저속 충돌범위(반구형 충격자 : 53m/s, 원추형 충격자 ; 73m/s)에서 실험결과치와 93%이상 잘 일치하였으며, 수치해석결과는 전체적인 충돌속도 범위에서 반구형 충격자인 경우 73%이상, 원추형 충격자인 경우 86%이상 일치하였다.

  • PDF

Investigation of Low Velocity Impact Behavior of Laminated Composite Plates Considering the Stacking Method (적층방법에 따른 복합적층판의 저속충격거동 조사)

  • Kim, Seung-Deog;Kwon, Suk-Jun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.75-83
    • /
    • 2010
  • Laminated composite plates have shown their superiority over metals in applications requiring high specific strength, high specific modulus, and so on. Therefore, they have used in various industry. However, they have poor resistance to impact compared to typical metal materials. So, many researchers have investigated about impact behavior of laminated composite plate. To investigate impact behavior of laminated composite plate, we have to calculate contact force between impactor and laminated composite plate at the first. Impactor's equation of motion, plate's equation of motion and correlations for indentation were solved to know the contact force at the same time. In this study, low velocity impact behavior of composite plate was investigated using the finite element program which is involved the classical Hertzian law, Sun's law and Sun & Yang's experimental law and Sun & Tan's experimental law considering the stacking method.

  • PDF