• Title/Summary/Keyword: 저등급석탄

Search Result 28, Processing Time 0.03 seconds

Reactivity Study on the Kideco Coal Catalytic Coal Gasification under CO2 Atmosphere Using Gas-Solid Kinetic Models (기-고체 반응 모델을 이용한 Kideco탄의 이산화탄소 촉매 석탄가스화 반응 특성)

  • Lee, Do Kyun;Kim, Sang Kyum;Hwang, Soon Cheol;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • In this study, we have investigated the kinetics on the char-CO2 catalytic gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-CO2 catalytic gasification of an Indonesian Kideco sub-bituminous. Na2CO3 and K2CO3 were selected as catalysts which were physically mixed with coal. The char-CO2 catalytic gasification reaction showed a rapid increase of carbon conversion rate at 850 ℃, 60 vol% CO2, and 7 wt% Na2CO3. At the isothermal conditions ranging from 750 ℃ to 900 ℃, the carbon conversion rates increased as the temperature increased. Four kinetic models for gas-solid reaction including the shrinking core model (SCM), random pore model (RPM), volumetric reaction model (VRM), and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM for the Kideco sub-bituminous. The activation energies for each char mixed with Na2CO3 and K2CO3 were found 55-71 kJ/mol and 69-87 kJ/mol.

Kinetic study on Low-rank Coal Including K2CO3, Na2CO3, CaCO3 and Dolomite Gasification under CO2 Atmosphere (이산화탄소 분위기에서 K2CO3, Na2CO3, CaCO3 및 Dolomite가 첨가된 저급탄의 가스화에 대한 반응특성연구)

  • Hwang, Soon Choel;Kim, Sang Kyum;Park, Ji Yun;Lee, Do Kyun;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2014
  • We have investigated the effects of various additives on Eco coal gasification under $CO_2$ atmosphere. The temperature ranges from $750{\sim}900^{\circ}C$ and the gasification experimental was carried out with Eco coal adding 7 wt% $K_2CO_3$, $Na_2CO_3$, $CaCO_3$, Dolomite, and non-additive under $N_2$ and $CO_2$ gas mixture. At $850^{\circ}C$, we observed that the reaction rate increased when the concentration of $CO_2$ increased. However, we also observed that the increment of reaction rate was small at more than 70% of the concentration of $CO_2$. The additives activity was ranked as 7 wt% $Na_2CO_3$ > 7 wt% $K_2CO_3$ > non-additive > 7 wt% Dolomite > 7 wt% $CaCO_3$ at $850^{\circ}C$. At the temperatures of $750^{\circ}C$, $800^{\circ}C$, $850^{\circ}C$, and $900^{\circ}C$, when the temperature increased, the gasification rate increased. The gasification was suitably described by the volumetric reaction model. Using volumetric reaction model, the activation energy of Eco coal including 7 wt% $Na_2CO_3$ gasification was 83 kJ/mol, which was the lowest value among all the alkaline additives.

Surface Characteristics and Spontaneous Combustibility of Coal Treated with Non-polar Solvent under Room Temperature (상온에서의 용매 처리를 통한 저등급 석탄의 표면물성 및 자연발화 특성 변화)

  • Jo, Wan Taek;Choi, Ho Kyung;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Hwan;Lee, Si Hyun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.609-614
    • /
    • 2013
  • This study investigated the spontaneous combustion behavior of solvent-treated low rank coals. Indonesian lignite (a KBB and SM coal) and sub-bituminous (a Roto coal) were mixed with non-polar 1-methyl naphthalene (1MN) either by mechanical agitation or ultrasonication. The property change associated with 1MN treatment was then analyzed using proximate analysis, calorific value analysis, Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy and moisture re-adsorption test. Susceptibility to spontaneous combustion was evaluated using crossingpoint temperature (CPT) measurement along with gas analysis by GC. A FT-IR profile showed that oxygen functional groups and C-H bonding became weaker when treated by 1 MN. XPS results also indicated a decrease of the oxygen groups (C-O-, C=O and COO-). Increased hydrophobicity was found in the 1MN treated coals during moisture readsorption test. A CPT of the treated coals was ${\sim}20^{\circ}C$ higher than that of the corresponding raw coals and the ultrasonication was more effective way to enhance the stability against spontaneous combustion than the agitation. In the gas analysis less CO and $CO_2$ were emitted from 1MN treated coals, also indicating inhibition of pyrophoric behavior. The surface functional groups participating in the oxidation reaction seemed to be removed by the ultrasonication more effectively than by the simple mechanical agitation.

Kinetic Study of Coal/Biomass Blended Char-CO2 Gasification Reaction at Various temperature (다양한 온도에서 석탄/바이오매스의 혼합 촤-CO2 가스화 반응특성 연구)

  • Kim, Jung Su;Kim, Sang Kyum;Cho, Jong Hoon;Lee, Si Hoon;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.746-754
    • /
    • 2015
  • In this study, we investigated the effects of the temperature on the coal/biomass $char-CO_2$ gasification reaction under isothermal conditions of $700{\sim}900^{\circ}C$ using the lignite(Indonesia Eco coal) with biomass (korea cypress). Ni catalysts were impregnated on the coal by the ion-exchange method. Four kinetic models which are shrinking core model (SCM), volumetric reaction model (VRM), random pore model (RPM) and modified volumetric reaction model (MVRM) for gas-solid reaction were applied to the experimental data against the measured kinetic data. The Activation energy of Ni-coal/biomass, non-catalyst coal/biomass $Char-CO_2$ gasification was calculated from the Arrhenius equation.

The Study on the Combustion and Ash Deposition Characteristics of Ash Free Coal and Residue Coal in a Drop Tube Furnace (DTF를 이용한 무회분 석탄과 잔탄의 연소 및 회 점착 특성에 관한 연구)

  • Moon, Byeung Ho;Kim, Jin Ho;Sh, Lkhagvadorj;Kim, Gyu Bo;Jeon, Chung Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.89-96
    • /
    • 2015
  • Recently, much research has been put into finding the causes and solutions of slagging/fouling problems that occur at the end of the boiler. This slagging/fouling, caused by low-rank coal's ash, disturbs the thermal power and greatly reduces efficiency. In environmental aspects, such as NOx pollution, governments have been implementing restrictions on the quantity of emission gases that can be released into the atmosphere. To solve these problems, research on Ash Free Coal (AFC), which eliminates ash from low-rank coal, is in progress. AFC has advantages over similar high-rank coals because it increases the heating value of the low grade coal, reduces the contaminants that are emitted, and decreases slagging/fouling problems. In this study, using a DTF, the changes of NOx emissions, unburned carbon, and the characteristics of ash deposition were identified. KCH raw coal, AFC extracted from KCH, residue coal, Glencore, and Mixed Coal (Glencore 85wt% and residue coal 15wt%) were studied. Results showed that AFC had a significantly lower emission of NOx compared to that of the raw coal and residue coal. Also, the residue coal showed a higher reactivity compared to raw coal. And finally, In the case of the residue coal and mixed coal, they showed a lower ash deposition than that of low-rank coal.

A study on the fuel of sewage sludge by torrefaction process (반탄화를 이용한 하수슬러지 연료화에 관한 연구)

  • Lee, Yoonkyung;Kim, Jae-Hyeong;Gang, Seol-Song;Kim, Gyeong-A;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.355-361
    • /
    • 2013
  • In this work, torrefaction of the sewage sludge was investigated the characteristics of torrefied products and the value of as energy resource to improve energy density and to maintain consistent quality of SRF. Torrefaction was performed two important torrefaction operational parameter, temperature($150-230^{\circ}C$) and reaction time(10-60min). As raising the torrefaction temperature at long reaction times, the moisture content of torrefied products was decreased, while the heating value was increased. Moreover, increasing of the torrefaction temperature led to a increase of the content of the carbon up to 60% compare to the initial the sample, and a decrease of the content hydrogen and oxygen. Especially, Average heating value was 4,818 kcal/kg regardless of the reaction time when torrefaction was performed over $210^{\circ}C$. In addition, the fuel ration and coal band were improved after torrefaction because the O/C and the H/C ratio were decreased.

Analysis of Oxygen Combustion Characteristics of a Low Grade Coal Using IEA-CFBC Model (IEA-CFBC 모델을 이용한 저급탄의 순산소 연소 특성 분석)

  • Gwak, You Ra;Kim, Ye Bin;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.631-640
    • /
    • 2018
  • The application of an oxy-combustion circulating fluidized bed combustor (Oxy-CFBC) for low grade coals has recently developed in the world to meet the continuous increase of energy demand and to achieve the reduction of greenhouse gases. Since demo plants for Oxy-CFBC have been developed, the combustion properties of Oxy-CFBC in various operation conditions, such as gas flow rates, combustion temperature, fuel, and so on, should be investigated to develop design criteria for a commercial Oxy-CFBC. In this study, a computational simulation tool for Oxy-CFBC was developed on the basis of the IEA-CFBC (International Energy Agency Circulating Fluidized Bed Combustor) model. Simulation was performed under various conditions such as reaction temperature ($800^{\circ}C{\sim}900^{\circ}C$), oxygen contents (21%~41%), coal feeding rate, Ca/S mole ratio (1.5~4.0), and so on. Simulation results show that the combustion furnace temperature is higher in oxy 1 than air fired. However, the temperature gradient tended to decrease with increasing oxy mixing percent. In case of $SO_x$, the higher the Ca/S mole ratio and oxy mixing percent, the higher the desulfurization efficiency.

A Kinetic Study of Steam Gasification of Woodchip, Sawdust and Lignite (나무칩, 톱밥 바이오매스와 갈탄의 수증기 가스화반응 특성 연구)

  • Kim, Kyungwook;Bungay, Vergel C.;Song, Byungho;Choi, Youngtai;Lee, Jeungwoo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.506-512
    • /
    • 2013
  • Biomass and low-grade coals are known to be better potential sources of energy compared to crude oil and natural gas since these materials are readily available and found to have large reserves, respectively. Gasification of these carbonaceous materials produced syngas for chemical synthesis and power generation. Woodchip, sawdust and lignite were gasified with steam in a thermobalance reactor under atmospheric pressure in order to evaluate their kinetic rate information. The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (20~90 kPa) on the gasification rate were investigated. The three different types of gas-solid reaction models were applied to the experimental data to predict the behavior of the gasification reactions. The modified volumetric model predicted the conversion data well, thus the model was used to evaluate kinetic parameters in this study. The observed activation energy of biomass, sawdust and lignite gasification reactions were found to be in reasonable range and their rank was found to be sawdust > woodchip > lignite. The expression of apparent reaction rates for steam gasification of the three solids was proposed to provide basic information on the design of coal gasification processes.