• Title/Summary/Keyword: 저궤도 위성(LEO satellite)

Search Result 183, Processing Time 0.022 seconds

Link analysis considering the satellite mobility in the LEO mobile communication networks (저궤도 이동위성통신망에서 위성의 이동성을 고려한 링크해석)

  • 황성현;김병균;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2256-2271
    • /
    • 1997
  • In this paper, we analyze the multipath fading and the inter-satellite interference considering the satellite mobility in the LEO mobile satellite communication networks and evaluate the link perfodrmance for various wave propagation environments and reliabilities of communiation system. Multipath fading is estimated by analyzing the variation of fading margin for the satellite motion in rural, urban and suburban environments. The inter-satellite interferences are classified into 8 bypes with respect to interference path. The interferences evaluated in the paper are as follows:intra-LEO satellite interference, inter-LEO satellite interference, and GEO satellite to LEO satellite interference. As a conclusion, this apaper analyzes the change of elevation anagle and propagation distance with respect to time in the LEO satellite netwoek and prosents the variation of link margin continuously.

  • PDF

Calculation Scheme of Interference between Low Earth Orbit Satellite System and Terrestrial System (저궤도 위성시스템과 지상시스템의 간섭 계산 기법)

  • Gam, Hye-Mi;Oh, Dae-Sub;Ahn, Do-Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.46-51
    • /
    • 2009
  • This paper addresses the calculation method of the interference produced between the LEO(Low Earth Orbit) satellite constellation and Terrestrial system operating in the same frequency and area. We describes the procedure used in the numerical computation of the statistics of the total interference produced by interference system. The presented results are applied for mutual protection of LEO satellite constellation and FS system during system design phase.

  • PDF

Mission Operation Capability Verification Test for Low Earth Orbit(LEO) Satellite by Utilizing Interface Environment between LEO Satellite and Ground Station (저궤도 위성과 지상국간 접속 환경을 활용한 임무수행능력 지상 검증 시험)

  • Lee, Sang-Rok;Koo, In-Hoi;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • After launch of Low Earth Orbit(LEO) satellite, Initial Activation Checkout(IAC) and Calibration and Validation(Cal & Val) procedure are performed prior to enter normal operation phase. During normal operation phase, most of the time is allocated for mission operation except following up measures to anomaly and orbit maintenance. Since mission operation capability is key indicator for success of LEO satellite program and consistent with promotion purpose of LEO satellite program, reliability should be ensured by conducting through test. In order to ensure reliability by examining the role of LEO satellite and ground station during ground test phase, realistic test scenario that is similar to actual operation conditions should be created, and test that aims to verify full mission cycle should be performed by transmitting created command and receiving image and telemetry data. This paper describes the test design and result. Consideration items for test design are described in detail and result of designed test items are summarized.

저궤도위성 궤도운동 및 자세에 영향을 미치는 외부교란토크 분석

  • Choi, Hong-Taek;Yong, Ki-Lyuk;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.54-62
    • /
    • 2003
  • The satellite in space has a tiny size but is subject to the disturbance torques caused by various sources. The presence of environmental disturbance torques significantly affects the orient as well as the orbital motion of satellite. The sources of environmental effects on LEO Satellite attitude dynamics are various. Four of these, gravity gradient, Earth's magnetic field, solar radiation pressure and aerodynamic are dominant and deterministic. In this study, we describe the model of environmental disturbance torques acting on LEO Satellite and the effects of environmental disturbance torques on LEO Satellite attitude dynamics in detail.

  • PDF

Development of Energy Balance Analysis Program for LEO Satellite Design (저궤도 인공위성 설계를 위한 에너지 균형 분석 프로그램 개발)

  • Lee, Sang-Kon;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.850-857
    • /
    • 2007
  • The design and analysis of satellite electrical power subsystem is an important driver for the mass, size, and capability of the satellite. In particular, satellite energy balance analysis is critical in determining the capabilities and limitations of the power subsystem and the success of satellite operations. This paper introduces a new energy balance analysis program for LEO satellite development and shows an example of test results using other LEO satellite design data. The test results show that the proposed energy balance program can be used the optimal sizing of satellite electrical power subsystem and the analytical prediction of the on-orbit energy balance during satellite mission operations.

Stabilization Converter Design and Modeling of LEO Satellite Power Systems (저궤도 위성의 전력 시스템 안정화를 위한 모델링 및 제어)

  • Yun, Seok-Teak;Won, Young-Jin;Lee, Jin-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • Satellites industry has been developing with the commercial and military needs. Because power system of satellite is very important to survival operation and hard to test, increasing reliability is very critical. Due to LEO small satellites are very sensitive to power system, effective stabilization control is important. Therefore, this paper introduce methods for general modeling of power converting system which it can be used design of controller and analysis of external disturbance influences. In conclusion, a modeling of LEO small satellites power converting system and a possible guide line to design reliable controller which optimizing power converters of LEO small satellite are generated.

Performance Analysis On Antenna's Isolation for LEO Satellite Communication Service (저궤도위성통신시스템의 안테나의 isolation에 따른 성능분석)

  • Oh Hyung-Jun;Won Yoo-Hun;Kim Jong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.129-137
    • /
    • 2005
  • A performance analysis of LEO Satellite Communication Service is being made in a variety of ways. In this paper we examined the variation of interference caused by the distribution of terminals within a cell and the maximum number of users according to the average distance between terminals, which had not been considered in former researches. Also we examined the interference made by sopt beam isolation value of some antennas(tapered-apertured antenna, gaussian antenna) which are used on LEO Satellite Communication Service Assigning this interference to the bandwidth of channels in LEO Satellite Communication Service, and with principal parameters(bandwidth, number of carrier) we made a performance analysis. And comparing tapered-apertured antenna with gaussian antenna we will find out which one is more effective and more suitable for interference.

  • PDF

Preliminary Design of LEO Satellite Propulsion System (저궤도위성 추진시스템 예비 설계)

  • Yu, Myeong-Jong;Lee, Gyun-Ho;Kim, Su-Gyeom;Choe, Jun-Min
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.85-89
    • /
    • 2006
  • Propulsion System provides the required velocity change impulse for orbit transfer from parking orbit to mission orbit and three-axis vehicle attitude control impulse. New LEO Satellite propulsion system (PS) will be an all-welded, monopropellant hydrazine system. The PS consists of the subassemblies and components such as Thrusters, Propellant Tank, Pressure Transducer, Propellant Filter, Latching Isolation Valves, Fill/Drain Valves, interconnecting propellant line assembly, and thermal hardwares for operation-environment control of the PS. In this study, preliminary design process of LEO Satellite propulsion system will be summarized.

  • PDF

Design and Development of MIMIC regarding Telemetry in LEO Satellites (저궤도 관측위성에서의 원격 측정 데이터 관련 MIMIC 설계 및 구현)

  • Huh, Yun-Goo;Kim, Young-Yun;Cho, Seung-Won;Choi, Jong-Yeoun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.42-48
    • /
    • 2012
  • The telemetry data received from satellite in real-time are used to monitor LEO satellite during the AIT (Assembly, Integration & Test) phase and the mission operation phase after launch. However, it is impossible to check all the incoming telemetry data from satellite in real time in order to detect abnormality of satellite quickly. Especially, the contact time of LEO satellite is limited because of its orbital characteristics. So the anomaly state of the LEO satellite should be detected and resolved during the contact time. Therefore, all incoming spacecraft telemetry data must be selected and manipulated in MIMIC. It is used in order to display summarized information about spacecraft in a visualized way that is quickly and easily understood. That is, it provides essential function to monitor a satellite both in orbit and during testing. In this paper, the design and development of MIMIC currently used in KOMPSAT, a LEO Earth observation satellite is described in detail. In future work, we plan to enhance MIMIC in order to improve user-friendliness and efficiency.

Performance Analysis of Turbo Codes for LEO Satellite Communication Channel (저궤도 위성통신 채널에서 터보부호의 성능분석)

  • 강군석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1313-1321
    • /
    • 2000
  • In recent years LEO(Low Earth Orbit) satellite communication systems have gained a lot of interest as high speed multimedia services by satellite are about to be provided. It is mandatory to use very efficient ECC(Error Correcting Code) to support high speed multimedia services over LEO satellite channel. Turbo codes developed by Berrou et al. in 1993 have been actively researched since it can achieve a performance close to the Shannon limit. In this paper, a LEO satellite channel model is adopted and the fading characteristics of LEO satellite channel are analyzed for the change of elevation angle in various propagation environments. The performance of turbo code is analyzed and compared to that of conventional convolutional code using the satellite channel model. In the simulation results using the Globalstar orbit constellations, performance of turbo codes shows 1.0~2.0dB coding gain compared to that of convolutional codes over all elevation angle and propagation environment ranges we have investigated. The performance difference resulting from the change of elevation angle in various propagation environments and the performance of different ECC are analyzed in detail, so that the results can be applied to choose an appropriate ECC scheme for various system environment.

  • PDF