• Title/Summary/Keyword: 재활용성평가

Search Result 442, Processing Time 0.032 seconds

Economic Evaluation for Recycling of Organic Waste (유기성 폐기물의 자원화 방법에 대한 경제성 평가)

  • Yoo, Hye-Young;Chung, David;Yoon, Cheol-Woo;Kang, Joon-Gu;Park, Ki-Hak;Kim, Ki-Heon;Shin, Sun-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.11-20
    • /
    • 2016
  • Depletion of natural resources and reduction of greenhouse gas emissions are an important issue which we have to solve. The recycling of waste has emerged as a global concern. In Korea, the development of cost-effective treatment and recycling technologies also need to be improved. In this study, we compared and analyzed the cost per unit of treatment and recycling of organic waste, and presented an effective recycling scheme. We investigated the current status of treatment and costs for six types of organic wastes from 80 workplaces, including organic wastewater treatment sludge, processed organic sludge, and plant residues. In addition, environmental costs for greenhouse gas reduction were calculated. It's an economic way that organic waste is composted and used as cement additives. In particular, the economic analysis was done by realistic results of the survey target companies. In conclusion, in order for reliable processing and recycling of organic wastes, wastewater treatment sludge and sewage sludge need to be classified based on hazard characteristics. Finally, technical difficulties need to be further resolved such as odors, leachate, and debris on recycling organic wastes.

Environmental Impact Evaluation of Mechanical Seal Manufacturing Process by Utilizing Recycled Silicon from End-of-Life PV Module (태양광 폐모듈 실리콘을 재활용한 메커니컬 실 제조공정의 환경성평가)

  • Shin, Byung-Chul;Shin, Ji-Won;Kwon, Woo-Teck;Choi, Joon-Chul;Sun, Ju-Hyeong;Jang, Geun-Yong
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • An environmental evaluation was conducted by employing LCA methodology for a mechanical seal manufacturing process that uses recycled silicon recovered from end-of-cycle PV modules. The recycled silicon was purified and reacted with carbon to synthesize β-SiC particles. Then the particles underwent compression molding, calcination and heat treatment to produce a product. Field data were collected and the potential environmental impacts of each stage were calculated using the LCI DB of the Ministry of Environment. The assessment was based on 6 categories, which were abiotic resource depletion, acidification, eutrophication, global warming, ozone depletion and photochemical oxidant creation. The environmental impacts by category were 45 kg CO2 for global warming and 2.23 kg C2H4 for photochemical oxide creation, and the overall environmental impact by photochemical oxide creation, resource depletion and global warming had a high contribution of 98.7% based on weighted analysis. The wet process of fine grinding and mixing the raw silicon and carbon, and SiC granulation were major factors that caused the environmental impacts. These impacts need to be reduced by converting to a dry process and using a system to recover and reuse the solvent emitted to the atmosphere. It was analyzed that the environmental impacts of resource depletion and global warming decreased by 53.9% and 60.7%, respectively, by recycling silicon from end-of-cycle PV modules. Weighted analysis showed that the overall environmental impact decreased by 27%, and the LCA analysis confirmed that recycling waste modules could be a major means of resource saving and realizing carbon neutrality.

Process Design and Economic Evaluation of Condensate Recycling Process for Steam Consumption Reduction (스팀 사용 저감을 위한 응축수 재활용 공정설계 및 경제성 평가)

  • Kim, Jinuk;Choi, Yeongryeol;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.660-667
    • /
    • 2020
  • This study focused on the epoxy resin production process, which uses the steam of 155 ℃ or higher as a heat source, and discards all condensate generated. A part of the process is operated at low temperatures of 70 ℃ or below, thus there are opportunities to reduce the steam consumption by recycling wasted condensate as a heat source for the low temperature section of process. In this study, we developed process models that can reduce steam by recovering waste heat through recycling condensate and conducted a case study to find an optimal condensate recycling system. Three different process designs were proposed and economic evaluations were performed by comparing annual capital costs and steam savings in each case. Finally, an annual steam consumption of the low-temperature section could be reduced by up to 67.6%, which could also bring an additional economic benefit of 522.1 million won/yr.

A Study on the Safety of Food Packaging Materials from the Perspective of the Circular Economy (순환경제 관점에서 본 플라스틱 식품포장재 재활용의 안전성에 관한 고찰)

  • 김미경
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.149-158
    • /
    • 2021
  • Advances in food packaging play an important role in keeping food manufacturing and food supply safe. Food packaging facilitates the storage, handling, transportation and preservation of food, and also contributes to the minimization of food waste. On the other hand, food packaging materials have high production volumes, short usage times, and accelerate the occurrence of environmental problems related to waste. The circular economy has already been introduced to pursue sustainability through resource conservation and recycling, and to reduce waste and carbon emissions. By activating an eco-friendly economic system that minimizes resource depletion and environmental pollution, reducing, reusing, recycling and redesigning the goals of the circular economy will reduce the impact of food packaging on the environment. This review focused on the safety aspects of recycled food packaging as recycling is currently considered an important means of packaging waste management. Assessing the safety of recycled packaging is very important because recycling can increase the levels of potentially hazardous chemicals in packaging and in the food after they are migrated. Various food packaging materials such as plastic, paper and cardboard, aluminum, steel, and multi-material multi-layers packaging are commonly used, but only the recycling safety of plastic food packaging materials, which is the most used and has a significant increase in post-use problem, is discussed in this review.