• Title/Summary/Keyword: 재활용성평가

Search Result 445, Processing Time 0.032 seconds

Effect of experiment process on corrosion damage of metallic material for nuclear energy instrument with chemical decontamination process (화학제염 시 시험공정이 원전기기용 금속 재료의 부식손상에 미치는 영향)

  • Jeong, Gwang-Hu;Yang, Ye-Jin;Park, Il-Cho;Lee, Jeong-Hyeong;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.136-136
    • /
    • 2017
  • 화학제염 기술은 산화제, 환원제, 금속이온, 무기산등이 혼합되어 있는 화학용액을 사용하여 원전기기 계통 내부에 생성된 고방사능 준위의 산화막과 오염물질을 제거하는 기술이다. 원전의 해체 및 유지보수에 있어 방사능 피복저감을 위한 필수적인 기술이다. 현재 원전 해체 산업은 잠재성이 높은 고부가가치 창출 산업으로 주목을 받고 있다. 원전 보유국의 경우, 기존 상용 제염기술과는 차별성 있는 제염기술을 확보하고자 노력하고 있다. 기존의 공정과 비교하여 공정비용 및 시간을 감소시킬 수 있어야 할 뿐만 아니라, 화학용액에 의한 원전 계통 금속 부품의 부식 및 손상을 최소화해야 한다. 금속 부품이 화학약품에 의한 부식손상을 받는다면 금속 부품의 수명 및 재활용 가치가 감소하기 때문에, 화학제염 기술 적용에 있어 용액에 대한 재료의 건전성 평가가 사전에 필히 이루어져야 한다. 본 연구에서는 원전 냉각재 펌프용 재료로 주로 사용되는 Stainless 304강을 시험편으로 선정하여, 화학제염 시험공정 3가지에 대한 부식손상 특성을 규명하였다. 산화공정은 과망간산($HMnO_4$) 용액을 공통으로 사용하였으며, 산화공정 종료 후 환원공정은 각 시험공정에 따라 시험공정 1은 옥살산($H_2C_2O_4$) 2000ppm, 시험공정 2는 옥살산($H_2C_2O_4$)1500ppm + 시트르산($H_8C_6O_7$)500ppm, 그리고 시험공정 3은 옥살산($H_2C_2O_4$) 3000ppm 용액을 각각 투입하여 수행하였다. 산화, 환원공정을 1Cycle로 하여, 각 시험공정 별로 총 5Cycle을 실시하였다. 각 시험공정 Cycle종료 후 시험편을 취외하여 무게감량측정, SEM(Scanning electron microscope) 분석, 3D현미경분석 그리고 타펠분극 실험을 실시하였다. 각 분석결과를 토대로 하여, Stainless 304강에 대한 화학제염 시 모델별 시험공정에 따른 부식특성을 규명하였다.

  • PDF

Effect of Steam Curing on Compressive Strength of Slag Binder Concrete (증기양생이 고로슬래그 콘크리트의 압축강도에 미치는 영향)

  • Lim, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.338-343
    • /
    • 2017
  • In this study, blast furnace slag powder was used in concrete to help reduce carbon dioxide emissions and to recycle industrial waste. Blast furnace slag powder is a byproduct of smelting pig iron and is obtained by rapidly cooling molten high-temperature blast furnace slag. The powder has been used as an admixture for cement and concrete because of its high reactivity. Using fine blast furnace slag powders in concrete can reduce hydration heat, suppress temperature increases, improve long-term strength, improve durability by increasing watertightness, and inhibit corrosion of reinforcing bars by limiting chloride ion penetration. However, it has not been used much due to its low compressive strength at an early age. Therefore, this study evaluates the effects of steam curing for increasing the initial strength development of concrete made using slag powder. The relationship between compressive strength, SEM observations, and XRD measurements was also investigated. The concrete made with 30% powder showed the best performance. The steam curing seems to affect the compressive strength by destroying the coating on the powder and by producing hydrates such as ettringite and Calcium-Silicate-Hydrate gel.

A Numerical Study on Safety Evaluation of Prefabricated Sewage-Pipe Plastic Foundation Based on Pipe Diameters and Buried Soil Depths (하수관거 직경과 심도를 고려한 하수관거 플라스틱 받침기초의 안전성 평가를 위한 해석연구)

  • Park, Rae-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4322-4327
    • /
    • 2015
  • Improper backfill materials and compaction controls under pipelines have become one of the major causes of failure in many sewage pipeline systems. A study on backfill materials and compaction controls has been considered for a long time. However, structural supporters under the pipe were recently concerned because of pipeline repair and maintenance. This paper presents a prefabricated plastic foundation for supporting a sewage pipe system and increasing the performance function of the pipes. Several analytical models for the plastic foundations were investigated using finite-element program, ABAQUS, for checking safety. Comparing with the results of analyses, some of economic design sections based on the sizes of pipe diameters, 600mm, 700 and 600mm, were evaluated. These results could be applied to a pipeline system with a prefabricated plastic foundation with respect to pipe diameters and buried depths.

Study of Characteristics of Clay Roof Tiles Using Ferro Nickle Slag Recycled Resources (페로니켈슬래그 순환자원을 활용한 점토기와의 성능평가)

  • Kim, Soon-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.281-291
    • /
    • 2021
  • To reduce the environmental load of the construction industry, there is a need to minimize construction and demolition by strengthening the eco-friendliness of building materials and extending the durable lifespan. Therefore, while many Hanok roof finishing methods have been proposed to address these problems, the current trend is to use the existing method due to issues such as economic feasibility, weight, and durability. The manufacturing method of clay roof tiles used as roofing materials for Hanok buildings is optimized by using a mixture of 64.5% Gyeongju clay, 15.0% kaolin, 15.0% FNS(Ferro Nickel Slag), and 5.5% MAS(Magnesia Aluminum Silicate) under optimal conditions. The results of the experiment involving firing at 1,125℃ showed that flexural strength of 12,102N, which is higher than the standard of KS F 3510, an absorption rate of 6.08%, a volume specific gravity of 2.15g/cm3, and the freeze-thaw properties were satisfied. A method for securing stable quality was studied.

Compressive Strength and Environmental Investigation for Beneficial Use of Dredged Sediments (준설퇴적물 유효활용을 위한 압축강도 및 환경성 평가)

  • Yoon, Gil Lim;Bae, Yoon Shin;Yoon, Yeo Won;Kim, Suk Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.119-131
    • /
    • 2010
  • In this study, beneficial use of ocean contaminated sediments were investigated by laboratory and environmental tests, and their prototypes were released. Dredged material from Ulsan port is used for making cement treated samples and lightweight foamed samples, and various engineering tests were performed to identify the compressibility and stress-strain behaviors. Environmental tests were also performed for the beneficial uses. The values of Cu are a little higher than the suggested standard possible for reusing dredged material and equal to the suggested standard alarming for reusing dredged material, which shows environmental harmfulness for the reuse of construction material. In addition, particle size distribution, compaction test, Atterberg limit tests, specific gravity test, and unit weight test were performed to investigate the use of landfill cover materials. The shear strengths of cement treated soils were found to be enough for reclamation works.

Exploring sustainable packaging design (지속 가능한 포장 디자인 탐구)

  • AN BOWEN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.495-499
    • /
    • 2024
  • This article summarizes the importance, definition, key strategies and future directions of sustainable packaging design.In modern society, sustainable packaging design is not only concerned with environmental protection and resource conservation, but also involves economic, social and cultural sustainable development.This paper explores strategies to reduce environmental burden and promote ecological balance by using environmentally friendly materials, optimizing packaging design, improving packaging recyclability and reuse. In addition, the article emphasizes the importance of design innovation, such as adopting a simplified design concept and modular system, as well as increasing the versatility of packaging.It also explores the application of life cycle assessment in packaging design to ensure that every step from design to disposal minimizes environmental impact. Finally, despite the environmental and social benefits that sustainable packaging design brings, it still faces technical, economic and regulatory challenges in practice.Future design will require interdisciplinary collaboration, integration of advanced technologies, consumer education and engagement, and enhanced policy and standard-setting to promote widespread adoption and practice of sustainable packaging.

Evaluation of the adsorptive capacity of spent coffee powder for the removal of aqueous organic pollutants (액상 유기오염물질에 대한 폐커피가루의 흡착능력 평가)

  • Kim, Seulgi;Na, Seungmin;Son, Younggyu
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2016
  • The reuse of spent coffee powder has been researched for environmental engineering applications such as adsorbents of organic/inorganic pollutants. In this study adsorption equilibrium tests and adsorption kinetics tests for the removal of aqueous organic pollutant (methylene blue) were conducted using spent coffee powder, granular activated carbon, and powdered activated carbon. It was found that the maximum adsorption capacity of three adsorbents followed the order of powdered activated carbon (178.6 mg/g) > spent coffee powder (60.6 mg/g) > granular activated carbon (15.6 mg/g). The results of adsorption kinetics tests also indicated that spent coffee powder had higher kinetic parameters than granular activated carbon for pseudo 1st and 2nd order kinetics. The high performance of spent coffee powder might be due to its porous surface like those of granular and powdered activated carbons and smaller particle size comparing with granular activated carbon.

An Analysis of Literature Trends in Green Library (녹색도서관 분야 연구 동향에 관한 분석)

  • Ahn, In-Ja;Kwak, Chul-Wan;Noh, Younghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.24 no.1
    • /
    • pp.189-205
    • /
    • 2013
  • The purpose of this study is to describe the trends and contents of literature in green library and to suggest the research direction on green library. Earlier studies focus on the green library architecture and necessity, after then green library management studies have proliferated. Green library architecture studies have emphasized on 'energy and atmosphere' and 'indoor environmental quality' based upon 5 categories of LEED evaluation system. Green library management studies have focused on library resources recycling and utilizing energy through effective management of library collection. Based on the analysis of literature, five research directions are suggested, such as the number of libraries in an area, library shelf position and space, library space program, collection ratio for library storage, and user studies.

A study on the choice of the best method of construction for building insulation and waterproof (건축물의 단열방수의 최적 공법및 구법 선정 방법론에 관한 연구)

  • Lee, Sung-Goo;Park, Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.654-658
    • /
    • 2006
  • To solve some problems that reveals in the exiting stickiness problem of the housetop, the housetop finishing impact layer can be displaced by the existing concrete block. By doing in this way, this need is rising that the excess cost should be reduced and the materials should be recycled in repairing. According to the above, this study is going to suggest the basic data on building and using of the dry process method by estimating and analyzing a overall determinate quantity through the experiment on the insulation performance among the capacity items on the outside insulation waterproof dry process suggested. In addition, choosing the building method according to the use, the peculiar property and the importance of the building can be possible by analyzing the defect causes happening in the rooftop insulation and waterproof, suggesting the better method and classifying the most proper choosing methods for the need of the building according to the importance of the main factors.

  • PDF

Assessment of Climate Change Impact on Groundwater Level Behavior in Geum River Basin using SWAT (SWAT을 이용한 기후변화에 따른 금강유역의 지하수위 거동 평가)

  • Lee, Ji Wan;Jung, Chung Gil;Kim, Da Rae;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.84-84
    • /
    • 2017
  • IPCC 4차 보고서(2007)에 따르면, 미래 기후변화로 인한 가장 취약한 부분으로 강수패턴의 시 공간 변화로 인한 가용 수자원의 변화를 선정하였으며 IPCC 5차 보고서(2014)는 특히 아시아지역은 지역별 대처전략수립, 물 재활용 등 수자원 다양화, 통합형 수자원 관리를 권고하였다. 지하수의 변화와 같이 흐름속도가 느리고 지속적인 요소의 경우에는 지표 기후변화의 영향을 쉽게 인식할 수 없으나 지표변화에 따른 변동이 지하수 환경에서 관측되기 시작하면 그 영향은 지표보다 훨씬 장기적으로 나타남에 따라 미래 기후변화에 따른 수자원의 효율적 관리를 위해서 지하수 거동에 대한 분석이 요구된다. 따라서 본 연구에서는 금강유역($9,865km^2$)을 대상으로 SWAT(Soil and Water Assessment Tool)을 이용하여 지표수와 지하수의 상호작용에 의한 물수지 분석을 수행하고, 기후변화에 따른 지하수 거동을 평가하였다. 유역의 물수지 분석을 위해 금강유역을 표준유역 단위로 구분하고, 기상자료, 다목적댐(대청댐, 용담댐)과 다기능보(공주보, 백제보, 세종보) 운영자료와, 국가지하수정보센터에서 관측 및 관리하고 있는 지하수위 관측 자료를 수집하였다. SWAT 모형의 신뢰성 있는 유출량 보정을 위해 금강유역 내 위치하는 다목적댐 및 다기능보의 실측 방류량을 이용하여 댐 운영모의를 고려하였고, 실측 지하수위, 토양수분 자료를 이용하여 모형의 보정(2005~2009)과 검증(2010~2015)을 실시하였다. 기후변화에 따른 지하수 거동 분석을 위해 기후변화 시나리오는 기상청의 HadGEM3-RA RCP 4.5와 8.5 시나리오를 적용하였으며, 기준년(1975-2005)년에 대해 2020s(2010-2039), 2050s(2040-2069), 2080s(2070-2099)의 지하수위 거동을 분석하였다.

  • PDF