• Title/Summary/Keyword: 재해정보도

Search Result 1,530, Processing Time 0.033 seconds

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

Evaluation on Spectral Analysis in ALOS-2 PALSAR-2 Stripmap-ScanSAR Interferometry (ALOS-2 Stripmap-ScanSAR 위상간섭기법에서의 스펙트럼 분석 평가)

  • Park, Seo-Woo;Jung, Seong-Woo;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.351-363
    • /
    • 2020
  • It is well known that alluvial sediment located in coastal region has been easily affected by geohazard like ground subsidence, marine or meteorological disasters which threaten invaluable lives and properties. The subsidence is a sinking of the ground due to underground material movement that mostly related to soil compaction by water extraction. Thus, continuous monitoring is essential to protect possible damage from the ground subsidence in the coastal region. Radar interferometric application has been widely used to estimate surface displacement from phase information of synthetic aperture radar (SAR). Thanks to advanced SAR technique like the Small BAseline Subset (SBAS), a time-series of surface displacement could be successfully calculated with a large amount of SAR observations (>20). Because the ALOS-2 PALSAR-2 L-band observations maintain higher coherence compared with other shorter wavelength like X- or C-band, it has been regarded as one of the best resources for Earth science. However, the number of ALOS-2 PALSAR-2 observations might be not enough for the SBAS application due to its global monitoring observation scenario. Unfortunately, the number of the ALOS-2 PALSAR-2 Stripmap images in area of our interest, Busan which located in the Southeastern Korea, is only 11 which is insufficient to apply the SBAS time-series analysis. Although it is common that the radar interferometry utilizes multiple SAR images collected from same acquisition mode, it has been reported that the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application could be possible under specific acquisition mode. In case that we can apply the Stripmap-ScanSAR interferometry with the other 18 ScanSAR observations over Busan, an enhanced time-series surface displacement with better temporal resolution could be estimated. In this study, we evaluated feasibility of the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application using Gamma software considering differences of chirp bandwidth and pulse repetition frequency (PRF) between two acquisition modes. In addition, we analyzed the interferograms with respect to spectral shift of radar carrier frequency and common band filtering. Even though it shows similar level of coherence regardless of spectral shift in the radar carrier frequency, we found periodic spectral noises in azimuth direction and significant degradation of coherence in azimuth direction after common band filtering. Therefore, the characteristics of spectral bandwidth in the range and azimuth direction should be considered cautiously for the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometry.

Characterization of Fault Kinematics based on Paleoseismic Data in the Malbang area in the Central Part of the Ulsan Fault Zone (고지진학적 자료를 이용한 울산단층대 중부 말방지역에서의 단층운동 특성 해석)

  • Park, Kiwoong;Prasanajit, Naik Sambit;Gwon, Ohsang;Shin, Hyeon-Cho;Kim, Young-Seog
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.151-164
    • /
    • 2022
  • According to the records of historical and instrumental earthquakes, the southeastern part of the Korean Peninsula is considered the highest seismic activity area. Owing to recent reports of numerous Quaternary faults along the Yangsan and Ulsan fault zones, paleoseismological studies are being actively conducted in these areas. The study area is located in the central part of the Ulsan fault zone, where the largest number of active faults have been reported. Based on lineament and geomorphic analysis using LiDAR images and aerial photographs, fault-related landforms showing topographic relief were observed and a trench survey was conducted. The trench length 20 m, width 5 m, depth 5 m is located approximately 300 m away to the northeast from the previously reported Malbang fault. From the trench section, we interpreted the geometric and kinematic characteristics of the fault based on the deformed features of the Quaternary sedimentary layers. The attitude of the reverse fault, N26°W/33°NE, is similar to those of the reported faults distributed along the Ulsan fault zone. Although a single apparent displacement of approximately 40 cm has been observed, the true displacement could not be calculated due to the absence of the slickenline on the fault plane. Based on the geochronological results of the cryogenic structure proposed in a previous study, the most recent faulting event has been estimated as being earlier than the late Wurm glaciation. We interpreted the thrust fault system of the study area as an imbrication structure based on the previous studies and the fault geometry obtained in this additional trench. Although several previous investigations including many trench surveys have been conducted, they found limited success in obtaining the information on fault parameters, which could be due to complex characteristics of the reverse fault system. Additional paleoseismic studies will contribute to solving the mentioned problems and the comprehensive fault evolution.

A Study on the Status of Low-rise Buildings (국내 저층 건축물의 현황에 관한 고찰)

  • Park, Hong-Shin
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.28-28
    • /
    • 2011
  • 국내의 건축물에 관한 통계정보는 국토해양부에 의해서 공표된 통계연보로서 2002년부터 매년마다 제공되고 있다.(국토해양통계누리, https : //stat.mltm.go.kr/potal/stat/yearReport.do) 건축물의 통계연보는 과거부터 2002년까지 매 3년마다 공표된 것으로 알려지고 있다. 이 통계연보에는 건축물 현황과 건축허가착공 통계가 수록되어 있다. 건축물 현황에는 2009년 말을 기준으로 기존 건축물이 전체 6,618,131동으로서 용도별, 층수와 연면적별 그리고 소유구분별 등의 구분에 따라 건축물의 동수에 관한 통계자료가 포함돼 있다. 건축허가 및 착공통계에는 용도별과 구조재료별의 분류에 따라 건축물의 동수에 관한 자료가 신축, 증축 개축 이전 대수선, 용도변경 등으로 분류되어 수록돼 있다. 한편 국내에서 건축물에 대한 내진설계기준이 1988년에 제정됨에 따라 법제화되었다. 이때 내진설계의 의무 대상건축물은 6층 이상 또는 연면적 1만$m^2$이상인 건축물로 규정되었다. 그 이후 내진설계 대상 건축물이 1996년부터 아파트는 5층 이상으로, 판매시설은 연면적 5천$m^2$이상으로 확대되었고, 2000년부터 숙박시설 오피스텔 및 기숙사는 5층 이상으로 확대되었으며, 2005년부터 내진설계 의무화 대상이 3층 이상 또는 1천$m^2$이상으로 확대되었고, 2009년부터 3층 이상 건축물의 구조안전의 확인을 위한 세부절차를 규정하여 내진설계의 실효성을 확보하고 있다. 이와 같이 내진설계의 대상 건축물이 내진설계기준을 제정한 이후 현재까지 시대의 흐름에 따라 6층 이상에서 5층 이상으로 다시 3층 이상으로 계속 확대되어왔다. 이런 환경에서 현재 시점에서 사용 중인 기존 건축물 중에 내진설계가 적용되지 아니한 건축물은 1988년 3월 1일 이전에 건축허가 된 건축물과 그 이후에 건축허가 된 3층 내지 5층 이하인 저층 건축물의 두 가지로 구분할 수 있다. 이들의 내진설계가 미적용 된 건축물에 대해서는 원칙적으로 내진보강 대책 수립 및 추진이 필요한 실정이다. 국내에서는 현재 지진재해대책법에 따라 지진재해로부터 국민의 생명과 재산을 보호하기 위하여 기존 시설물에 대한 내진대책을 추진하는 정책이 시행되고 있다. 앞으로는 이 정책의 일환으로 기존 건축물의 내진성능 확보를 위한 내진보강 대책이 구체적으로 추진될 전망이다. 이와 같이 기존 건축물에 대한 내진보강 대책을 수립하는 데는 무엇보다 그 대상 건축물의 수와 구조형식에 관한 정보가 필요하다. 이는 내진보강의 방법과 소요비용이 건축물의 층수 및 구조형식별 동수에 따라 크게 달라지기 때문이다. 이런 관점에서 살펴볼 때 내진대책의 수립에 필수인 기존 저층 건축물의 층수 및 구조형식별 동수에 관한 통계자료를 현재 건축물의 현황통계에서 손쉽게 찾아 볼 수 있으면 좋겠는데 현실은 그렇지 못한 실정이다. 현재 건축물의 현황통계에는 저층 건축물에 해당하는 층수에 관한 구분이 연대에 따라 다르고 구체적인 층수를 구분하기 어렵게 불분명한 항목으로 구성된 것과 구조형식별 분류항목이 없는 형편이다. 반면에 건축허가 및 착공통계자료에는 구조재료별 건축물 동수와 연면적에 관한 자료가 수록되어있고, 건축물 층수에 따라 분류된 통계자료는 없다. 이 연구에서는, 기존 건축물에 대한 내진보강 대책을 수립하는데 필요한 저층 건축물의 층수 및 구조재료별 동수 등에 관한 구체적인 정보를 파악하기 위하여, 건축물 통계연보에 수록된 건축물 현황통계자료에서 불명확하거나 결여된 정보를 건축허가 및 착공 통계자료로부터 얻은 정보로 보완과 보충하여 제시하고 있다. 따라서 이 연구는 기존 건축물의 내진보강 대책 수립에 필요한 5층 이하의 저층 건축물에 관한 층수별 및 구조형식별 동수에 관한 연도별 통계자료를 추정하여 제안하는데 그 목적이 있다.

  • PDF

Implementation Strategy of Global Framework for Climate Service through Global Initiatives in AgroMeteorology for Agriculture and Food Security Sector (선도적 농림기상 국제협력을 통한 농업과 식량안보분야 전지구기후 서비스체계 구축 전략)

  • Lee, Byong-Lyol;Rossi, Federica;Motha, Raymond;Stefanski, Robert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.109-117
    • /
    • 2013
  • The Global Framework on Climate Services (GFCS) will guide the development of climate services that link science-based climate information and predictions with climate-risk management and adaptation to climate change. GFCS structure is made up of 5 pillars; Observations/Monitoring (OBS), Research/ Modeling/ Prediction (RES), Climate Services Information System (CSIS) and User Interface Platform (UIP) which are all supplemented with Capacity Development (CD). Corresponding to each GFCS pillar, the Commission for Agricultural Meteorology (CAgM) has been proposing "Global Initiatives in AgroMeteorology" (GIAM) in order to facilitate GFCS implementation scheme from the perspective of AgroMeteorology - Global AgroMeteorological Outlook System (GAMOS) for OBS, Global AgroMeteorological Pilot Projects (GAMPP) for RES, Global Federation of AgroMeteorological Society (GFAMS) for UIP/RES, WAMIS next phase for CSIS/UIP, and Global Centers of Research and Excellence in AgroMeteorology (GCREAM) for CD, through which next generation experts will be brought up as virtuous cycle for human resource procurements. The World AgroMeteorological Information Service (WAMIS) is a dedicated web server in which agrometeorological bulletins and advisories from members are placed. CAgM is about to extend its service into a Grid portal to share computer resources, information and human resources with user communities as a part of GFCS. To facilitate ICT resources sharing, a specialized or dedicated Data Center or Production Center (DCPC) of WMO Information System for WAMIS is under implementation by Korea Meteorological Administration. CAgM will provide land surface information to support LDAS (Land Data Assimilation System) of next generation Earth System as an information provider. The International Society for Agricultural Meteorology (INSAM) is an Internet market place for agrometeorologists. In an effort to strengthen INSAM as UIP for research community in AgroMeteorology, it was proposed by CAgM to establish Global Federation of AgroMeteorological Society (GFAMS). CAgM will try to encourage the next generation agrometeorological experts through Global Center of Excellence in Research and Education in AgroMeteorology (GCREAM) including graduate programmes under the framework of GENRI as a governing hub of Global Initiatives in AgroMeteorology (GIAM of CAgM). It would be coordinated under the framework of GENRI as a governing hub for all global initiatives such as GFAMS, GAMPP, GAPON including WAMIS II, primarily targeting on GFCS implementations.

Analysis of National Vertical Datum Connection Using Tidal Bench Mark (기본수준점을 이용한 국가수직기준연계 분석 연구)

  • Yoon, Ha Su;Chang, Min Chol;Choi, Yun Soo;Huh, Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.47-56
    • /
    • 2014
  • Recently, the velocity of sea-level rising has increased due to the global warming and the natural disasters have been occurred many times. Therefore, there are various demands for the integration of vertical reference datums for the ocean and land areas in order to develop a coastal area and prevent a natural disaster. Currently, the vertical datum for the ocean area refers to Local Mean Sea Level(LMSL) and the vertical datum for the land area is based on Incheon Mean Sea Level(IMSL). This study uses 31 points of Tidal Gauge Bench Mark (TGBM) in order to compares and analyzes the geometric heights referring LMSL, IMSL, and the nationally determined geoid surface. 11 points of comparable data are biased more than 10 cm when the geometric heights are compared. It seems to be caused by the inflow of river, the relocation of Tidal Gauge Station, and the topographic change by harbor construction. Also, this study analyze the inclination of sea surface which is the difference between IMSL and LMSL, and it shows the inclination of sea surface increases from the western to southern, and eastern seas. In this study, it is shown that TGBM can be used to integrate vertical datums for the ocean and land areas. In order to integrate the vertical datums, there need more surveying data connecting the ocean to the land area, also cooperation between Korea Hydrographic and Oceanographic Administration and National Geographic Information Institute. It is expected that the integrated vertical datum can be applied to the development of coastal area and the preventative of natural disaster.

The Risk Assessment of the Fire Occurrence According to Urban Facilities in Jinju-si (진주시 도시시설물별 화재발생 위험도 평가)

  • Bae, Gyu Han;Won, Tae Hong;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • Urbanization in Korea has increased significantly and subsequently, various facilities have been concentrated in urban areas at high speed in accordance with a growing urban population. Accordingly, damages have occurred due to a variety of disasters. In particular, fire damage among the social disasters caused the most severe damage in urban areas along with traffic accidents. 44,432 cases of fire occurred in 2015 in Korea. Due to these accidents, 253 were killed and property damage of 4,50 billion won was generated. However, despite the efforts to reduce a variety of damage, fire danger still remains high. In this regard, this study collected fire data, generated from 2007 to 2014 through the Jinju Fire Department and the National Fire Data System(NFDS) and calculated fire risk by analyzing the clustering of fire cases and facilities in Jinju-si based on the current DB of facilities, offered by the Ministry of Government Administration and Home Affairs. As a result, the risk ratings of fire occurrence were classified as four stages under the standards of the US Society of Fire Protection Engineers(SEPE). Business facilities, entertainment facilities, and automobile facilities were classified as the highest A grade, detached houses, Apartment houses, education facilities, sales facilities, accommodation, set of facilities, medical facilities, industrial facilities, and life service facilities were classified as U grade, and other facilities were classified as EU grade. Finally, hazardous production facilities were classified as BEU grade, the lowest grade. In addition, in the case of setting the standard with loss of life, the highest risk facility was the hazardous production facilities, while in the case of setting the standard with property damage, a set of facilities and industrial facilities showed the highest risk. In this regard, this study is expected to be effectively utilized to establish the fire reduction measures against facilities, distributed in urban space by calculating risk grades regarding the generation frequency, casualties, and property damage, through the classification of fire, occurred in the city, according to the facilities.

The Integer Number Divider Using Improved Reciprocal Algorithm (개선된 역수 알고리즘을 사용한 정수 나눗셈기)

  • Song, Hong-Bok;Park, Chang-Soo;Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1218-1226
    • /
    • 2008
  • With the development of semiconductor integrated technology and with the increasing use of multimedia functions in computer, more functions have been implemented as hardware. Nowadays, most microprocessors beyond 32 bits generally implement an integer multiplier as hardware. However, as for a divider, only specific microprocessor implements traditional SRT algorithm as hardware due to complexity of implementation and slow speed. This paper suggested an algorithm that uses a multiplier, 'w bit $\times$ w bit = 2w bit', to process $\frac{N}{D}$ integer division. That is, the reciprocal number D is first calculated, and then multiply dividend N to process integer division. In this paper, when the divisor D is '$D=0.d{\times}2^L$, 0.5 < 0.d < 1.0', approximate value of ' $\frac{1}{D}$', '$1.g{\times}2^{-L}$', which satisfies ' $0.d{\times}1.g=1+e$, $e<2^{-w}$', is defined as over reciprocal number and then an algorithm for over reciprocal number is suggested. This algorithm multiplies over reciprocal number '$01.g{\times}2^{-L}$' by dividend N to process $\frac{N}{D}$ integer division. The algorithm suggested in this paper doesn't require additional revision, because it can calculate correct reciprocal number. In addition, this algorithm uses only multiplier, so additional hardware for division is not required to implement microprocessor. Also, it shows faster speed than the conventional SRT algorithm and performs operation by word unit, accordingly it is more suitable to make compiler than the existing division algorithm. In conclusion, results from this study could be used widely for implementation SOC(System on Chip) and etc. which has been restricted to microprocessor and size of the hardware.

A Case Study on the Implementation of Integrated Operation System of the Nakdong River Estuary Barrage Due to the Drainage Gate Extension (낙동강 하굿둑의 배수문 증설에 따른 통합운영시스템의 구축 사례에 대한 연구)

  • Kim, Seokju;Lim, Taesoo;Kim, Minsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.1
    • /
    • pp.183-199
    • /
    • 2015
  • Due to the Four Major Rivers Restoration Project, Nakdong River Estuary Barrage's designed flood quantity has been largely increased, and this has caused to construct several drainage gates at the right side of Eulsukdo island to secure the safety of downstream river area. For successful functioning of Nakdong River Estuary Barrage, such as flood control, disaster prevention, and the securing of sufficient water capacity, drainage gates at the both sides of island have to operate systematically and reliably. To manage this under restricted personnel and resources, we have implemented the IOS (Integrated Operation System) by integrating previous facilities and resources via information and communication technologies. The IOS has been designed to have higher availability and fault tolerance to function continuously even with the partial system's failure under the emergency situation like flood. Operators can use the system easily and acknowledge alarms of facilities through its IWS (Integrated Warning System) earlier. Preparing for Integrated Water Resources Management and Smart Water Grid, the architecture of IOS conformed to open system standards which will be helpful to link with the other systems easily.

The Study of Relationship between Berm Width and Debris Flow at the Slope (사면에서 토석류와 소단폭의 관계성에 관한 연구)

  • Kim, Sungduk;Oh, Sewook;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.5-12
    • /
    • 2013
  • The purpose of this study is to estimate the behavior and the mechanism of debris flow at the end of mountain side when a berm was set on the inclined plane. The numerical model was performed by using the Finite Difference Method(FDM) based on the equation for the mass conservation and momentum conservation. In order to measure the behavior of the debris flow, the debris flow of a straight channel slope and the debris flow of channel slope with 3 types of berms were compared. First, the flow discharge and the sediment volume concentration at the downstream of the channel slope, depending on the various berm width and the different inflow discharges at the upstream of the channel were analyzed. The longer the berm width, the flow discharge at the downstream of the channel was decreased and the high flow fluctuation was reduced by a berm. And it means that a berm can effect for the delay of the debris flow. Through Root Mean Square ratio(RMS) comparison, the flow discharge of the channel slope with a berm was lower than that of a straight channel slope. The longer the berm width, for the sediment volume concentration, an inflection point did not show but mild curve. Because the low sediment concentration with water mixture by a berm continuously flow at the downstream end, it will be effect for reducing the disaster caused by debris flow. The results of this study will provide useful information in predicting and preventing disaster caused by the debris flow.