• Title/Summary/Keyword: 재해경감

Search Result 189, Processing Time 0.032 seconds

Effect of Carbofuran on Rice Growth (식물생장조절제(植物生長調節劑) Carbofuran이 벼 생육(生育)에 미치는 영향(影響))

  • Kim, Soon-Chul
    • Korean Journal of Weed Science
    • /
    • v.7 no.1
    • /
    • pp.98-106
    • /
    • 1987
  • The effect of carbofuran (2, 3-Dihydro-2,2-dimethyl-benzofuran-7-ylmethyl carbamate) on rice growth was evaluated as a direct growth stimulant of rice. For this, several laboratory and field trials conducted from 1981 to 1986 at the Yeongnam Crop Experiment Station. Carbofuran solution affected the germination of rice seed. The growth of seminal roots was adversely affected by the increase of carbofuran concentrations while the length of single root became longer with the concentration increment up to 50 ppm. Carbofuran application (0.18g ai/$m^2$) at the rice nurserybed significantly enhanced the rice growth and recovered from the Low temperature damage. The enhancement effect was more pronounced at the plot that applied carbofuran before rice seeding as soil incorporation than top-dressing. The effect of growth enhancement further extended to transplanted lowland rice. This effect was greater at double cropping area (late of June transplanting) compared to single cropping area (May transplanting). Among important agronomic traits, the increment of panicle number was the most important direct effect for increasing rice grain yield by carbofuran application. Carbofuran application also exhibited the reducing effect against low temperature damage at reductive division stage and at rice heading stage and against submergence damage at booting stage through enhancement of fertile grain ratio, ripening ratio or photosynthetic activity.

  • PDF

A Study on Evaluation Parameters of Safety City Models (안전도시 모델의 평가지표에 관한 연구)

  • Joon-Hak Lee;Okkyung Yuh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2023
  • As interest in urban safety has increased since COVID-19, various institutions have developed and used indicators that evaluate the safety city model. Yongsan-gu was ranked No. 1 in 2021 by Social Safety Index evaluation and was selected as the safest city in Korea. However, the Itaewon disaster in Yongsan-gu in 2022 caused many casualties. The study of indicators for evaluating cities' safety was necessary. This study aims to examine domestic and foreign safe city models and review the differences between each model and the indicators used to evaluate safe cities. As a result of collecting 11 safe city models and analyzing each evaluation index, safe city models can be classified into program-based safe city models, such as the World Health Organization's International safe community and the UN Office for Disaster Risk Reduction's International Safe city. Considering the diversification of threats to safety, it is reasonable to comprehensively consider digital security, health safety, infrastructure safety, personal safety, environmental safety, traffic safety, fire safety, crime safety, life safety, suicide, and infectious diseases when evaluating safe cities as evaluation parameters.

Applications of "High Definition Digital Climate Maps" in Restructuring of Korean Agriculture (한국농업의 구조조정과 전자기후도의 역할)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The use of information on natural resources is indispensable to most agricultural activities to avoid disasters, to improve input efficiency, and to increase lam income. Most information is prepared and managed at a spatial scale called the "Hydrologic Unit" (HU), which means watershed or small river basin, because virtually every environmental problem can be handled best within a single HU. South Korea consists of 840 such watersheds and, while other watershed-specific information is routinely managed by government organizations, there are none responsible for agricultural weather and climate. A joint research team of Kyung Hee University and the Agriculture, forestry and Fisheries Information Service has begun a 4-year project funded by the Ministry of Agriculture and forestry to establish a watershed-specific agricultural weather information service based on "high definition" digital climate maps (HD-DCMs) utilizing the state of the art geospatial climatological technology. For example, a daily minimum temperature model simulating the thermodynamic nature of cold air with the aid of raster GIS and microwave temperature profiling will quantify effects of cold air drainage on local temperature. By using these techniques and 30-year (1971-2000) synoptic observations, gridded climate data including temperature, solar irradiance, and precipitation will be prepared for each watershed at a 30m spacing. Together with the climatological normals, there will be 3-hourly near-real time meterological mapping using the Korea Meteorological Administration's digital forecasting products which are prepared at a 5 km by 5 km resolution. Resulting HD-DCM database and operational technology will be transferred to local governments, and they will be responsible for routine operations and applications in their region. This paper describes the project in detail and demonstrates some of the interim results.

Implementation Strategy of Global Framework for Climate Service through Global Initiatives in AgroMeteorology for Agriculture and Food Security Sector (선도적 농림기상 국제협력을 통한 농업과 식량안보분야 전지구기후 서비스체계 구축 전략)

  • Lee, Byong-Lyol;Rossi, Federica;Motha, Raymond;Stefanski, Robert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.109-117
    • /
    • 2013
  • The Global Framework on Climate Services (GFCS) will guide the development of climate services that link science-based climate information and predictions with climate-risk management and adaptation to climate change. GFCS structure is made up of 5 pillars; Observations/Monitoring (OBS), Research/ Modeling/ Prediction (RES), Climate Services Information System (CSIS) and User Interface Platform (UIP) which are all supplemented with Capacity Development (CD). Corresponding to each GFCS pillar, the Commission for Agricultural Meteorology (CAgM) has been proposing "Global Initiatives in AgroMeteorology" (GIAM) in order to facilitate GFCS implementation scheme from the perspective of AgroMeteorology - Global AgroMeteorological Outlook System (GAMOS) for OBS, Global AgroMeteorological Pilot Projects (GAMPP) for RES, Global Federation of AgroMeteorological Society (GFAMS) for UIP/RES, WAMIS next phase for CSIS/UIP, and Global Centers of Research and Excellence in AgroMeteorology (GCREAM) for CD, through which next generation experts will be brought up as virtuous cycle for human resource procurements. The World AgroMeteorological Information Service (WAMIS) is a dedicated web server in which agrometeorological bulletins and advisories from members are placed. CAgM is about to extend its service into a Grid portal to share computer resources, information and human resources with user communities as a part of GFCS. To facilitate ICT resources sharing, a specialized or dedicated Data Center or Production Center (DCPC) of WMO Information System for WAMIS is under implementation by Korea Meteorological Administration. CAgM will provide land surface information to support LDAS (Land Data Assimilation System) of next generation Earth System as an information provider. The International Society for Agricultural Meteorology (INSAM) is an Internet market place for agrometeorologists. In an effort to strengthen INSAM as UIP for research community in AgroMeteorology, it was proposed by CAgM to establish Global Federation of AgroMeteorological Society (GFAMS). CAgM will try to encourage the next generation agrometeorological experts through Global Center of Excellence in Research and Education in AgroMeteorology (GCREAM) including graduate programmes under the framework of GENRI as a governing hub of Global Initiatives in AgroMeteorology (GIAM of CAgM). It would be coordinated under the framework of GENRI as a governing hub for all global initiatives such as GFAMS, GAMPP, GAPON including WAMIS II, primarily targeting on GFCS implementations.

A Study on a Quantitative Method in Estimating Forest Effects for Streamflow Regulation (II) - Mainly Dealing with Application of Coefficient for Slope Roughness - (삼림이수기능(森林理水機能)의 정량적(定量的) 평가방법(平價方法)에 관한 연구(硏究)(II) - 조도계수(粗度係數)의 응용(應用)을 중심(中心)으로 -)

  • Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.337-345
    • /
    • 1992
  • In this research, a kinematic wave model was applied for the runoff analysis, Regulation of streamflow was estimated by the calibration of roughness coefficient as a parameter. The data analyzed were obtained from Ananomiya and Shirasaka experimental basins at Tokyo University Forest in Aichi. Estimation methods and characteristics of roughness coefficient as a evaluation method of hydrological function of forest are summarized as follows ; 1. Roughness coefficient($N_s$) indicates the resistance of hillslope to the flowing water of surface runoff. There exists an hypothesis that resistance of hillslope to flowing water increase with the growth forest and development of the $A_o$ layer. 2. Roughness coefficient($N_s$) was estimated by the parameter when the stream direct runoff was calculated by using the kinematic wave. 3. Secular change of '$N_s$' in ananomiya has a curve which has an upper limit and increases exponentially near the limit. The curve quickly increased from 1935 to 1945 when results of afforestation for erosion control were thought to be effective. On the other hand, slight increase of '$N_s$' in Shirasaka indicates that there was not such a big change in the surface of soil layer. 4. The increase of '$N_s$' was related with decrease of direct runoff and increase of base flow. It was recognized that the rate of direct runoff decreased with the improvement of forest physiognomy and the rate of base flow was increased. But absolute value of water runoff per one storm decreased in chronological order.

  • PDF

Method of Environmental-Friendly Fertilization for Rice Cultivation after Vegetable Copping in Green House Soil (시설재배 후작 벼 재배를 위한 친환경적 시비 기술)

  • Jeon, Weon-Tai;Lee, Jae-Sang;Park, Ki-Do;Park, Chang-Yeong;Roh, Sug-Won;Yang, Won-Ha
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • Green house soils have been intensively cultivated with excessive application of compost and chemical fertilizer for vegetable growth. The objective of this study was to establish the reasonable fertilizer application system for rice cultivation in green house soil. Field experiment was carried out with rice cv. Geumo-byeo 1 in Jisan series soil (fine loamy, mixed, mesic family of Fluventic Haplaquepts) that was previously cropped with green pepper (Capsicum annuum L.) for the last 3 years. Treatment consisted of conventional fertilization $(N-P_2O_5-K_2O=11-4.5-5.7kg\;10a^{-1})$, no basal fertilization, 50% reduction of basal fertilization no top dressing, bulk blending fertilizer, and no fertilizer. The value of pH, available phosphate, and exchangeable potassium after experiment was lower than those before experiment while organic matter content was not difference in all treatment. The value of salt elusion was the highest in no basal fertilization plot. The amount of $NH_4-N$ in soil was higher in growth stage of rice as fertilizer amount increased in 1998. The changes of plant height and tiller were higher as fertilizer amount increased. Thousand-grain weight as yield component was higher in no basal fertilization plot all the year because of decreasing panicle. There was no significant difference in rice yield between treatments in 1998. However, conventional fertilization resulted in significantly increased rice yield in 1999. Nitrogen use efficiency was the highest in no basal fertilization plot in 1998 and in conventional fertilization plot in 1998. Our results suggest that no basal fertilization be best to increase salt elusion with slightly increased yield in first year for rice cropping after vegetable harvesting, which method improves fertilization efficiency. However, conventional fertilization was good for second rice cropping after vegetable harvesting in greenhouse.

Uplift Bearing Capacity of Spiral Steel Peg for the Single Span Greenhouse (온실용 나선철항의 인발저항력 검토)

  • Lee, Bong Guk;Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • This study examined the uplift bearing capacity of spiral steel pegs according to the degree of soil compaction and embedded depth in a small-scaled lab test. As a result, their uplift bearing capacity increased according to the degree of soil compaction and embedded depth. The uplift bearing capacity under the ground condition of 85% compaction rate especially recorded 48.9 kgf, 57.9 kgf, 86.2 kgf and 116.6 kgf at embedded depth of 25 cm, 30 cm, 35 cm and 40 cm, respectively, being considerably higher than under other ground conditions. There were huge differences in the uplift bearing capacity of spiral steel pegs according to the compaction conditions of ground. Their maximum uplift bearing capacity was 116.6 kgf under the ground condition of 85% compaction rate and at embedded depth of 40 cm, and it is very high considering the data of spiral steel pegs. It is thus estimated that wind damage can be effectively reduced by careful maintenance of ground condition surrounding spiral steel pegs. In addition, spiral steel pegs will be able to make a contribution to greenhouse structural stability if proper installation methods are provided including the number and interval according to the types of greenhouse as well as fixation of plastic film. The findings of the study indicate that the optimal effects of spiral steel pegs for greenhouse can be achieved at embedded depth of more than 35cm and compaction degree of more than 85%. The relative density of the model ground in the test was 67% at compaction rate of 85%.

Analysis of Unrest Signs of Activity at the Baegdusan Volcano (백두산 화산의 전조활동 분석 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Baegdusan volcano is one of the most active volcanoes in northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2,000 years. During the period from 2002 to 2005, volcanic earthquakes and abnormal surface distortions by suspected subsurface magma intrusion beneath the volcano were observed in the Baegdusan area. Seismic activity has gradually increased with earthquake swarms during 2002-2003 and hundreds of seismic event in a day, especially annual peak of 2,100 in 2003. Then the number of seismic activity has declined since 2006 to the background level in 1999-2001. According to the typical frequency of volcanic earthquakes in the Baegdusan volcano, the frequency distribution of typical volcanic earthquakes between 2002 and 2005 indicates that all the main frequency of the earthquakes basically falls down less than 5 Hz and 5-10 Hz. These events are all the VT-B and LP events caused by the shallow localized fracture and intrusion of magma. The horizontal displacement measurement by GPS during the period from 2000 to 2007 of the Baegdusan stratovolcano area indicates that an inflated process has been centered at the summit caldera since 2002. The displacement between 2002 and 2003 reached at a maximum value of 4 cm. After 2003, the deformation rate of the volcano continued to decrease with unusual variation during the period from 2006 to 2007. After 2003 the vertical displacement uplift rate falls down gradually but still keeps in an uplift trend in northern slope. It is generally believed that when $^3He/^4He(R)$ in a gas sample from a hot spring exceeds $^3He/^4He(R)$ in the atmosphere, it can be concluded that mantle-source. And temperatures of hot springs are rising steadily to $83^{\circ}C$. It is unrest signals at the Baegdusan, which is potentially active. The Baegdusan volcano is now in unrest status, there is eruption threat in the near future. Intensified monitoring and emergency response plan for volcanic risk mitigation are urgent for the volcano.

Variation of Indoor Air Temperature by using Hot Water Piping in Greenhouse (온수배관에 의한 온실 내부의 온도변화)

  • Yoon, Yong-Cheol;Shin, Yik-Soo;Bae, Seoung-Beom;Kim, Hyeon-Tae;Choi, Jin-Sik;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.179-190
    • /
    • 2012
  • This study was performed to obtain a heat saving effect and enhance the efficiency of a greenhouse by using a hot water piping in order to minimize the operating costs of a greenhouse as oil prices continue to rise. This method also reduces the likelihood of accidents caused by snowdrifts in regions with heavy snowfall. In general, the experimental plot was $2.0{\sim}6.0^{\circ}C$ higher than the control plot. When the skylight felt was opened, the minimum temperature was in the range of $3.0{\sim}12.0^{\circ}C$. Therefore, we judged that damage caused by snowdrifts may be prevented partly by active heating. The temperature difference inside of the greenhouse by height was insignificant. The maximum heating load of the greenhouse according to crop was respectively about $37,000kcal{\cdot}h^{-1}$ and $41,700kcal{\cdot}h^{-1}$. During the experiment, the heat value of each designed temperature in the range of the minimum ambient temperature $-11.9{\sim}4.0^{\circ}C$ was about 95,000~322,000 kcal and it was in the range of $6,050{\sim}20,900kcal{\cdot}h^{-1}$. If it is compared with the maximum heating load, it can be shown that about 15~56% of the heating energy can be supplied. The total heat value and the amount of power consumption were 2,629,025 kcal and 677.3 kWh respectively during the experiment. If it is heated with diesel, a fossil fuel, the consumption during the experiment was 291 L and the cost was 331,700won. Total cost of using electric power was about 24,400 won and it is shown that it is about 7.5% of the cost of diesel consumption. Also, if the total amount of power consumption is converted into energy, it is approximately 582,200 kcal and the energy was just about 22% of the total heat value.