• Title/Summary/Keyword: 재하시험방법

Search Result 26, Processing Time 0.02 seconds

Lateral Resistance Behavior Analysis of Drilled Shafts in Multi-layered Soil (다층지반에 근입된 현장타설말뚝의 수평 지지거동분석)

  • Jang, Seo-Yong;Jeong, Jae-Hoon;Kim, Jong-Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.61-70
    • /
    • 2008
  • In this research, load-transfer-function method was selected, because that is widely used in geotechnical engineering among the analysis methods to verify the behavior of load-lateral displacement. Lateral loading test of field scale was conducted, this measured data was analyzed. From the analysis, the model of load-lateral displacement was suggested. The test results were studied and compared to the commercial programs, 'LPILE', which contain the load transfer functions proposed before. By analysis of measure data of load-lateral displacement that expressed to several functions, $y=ae^{bx}$ model was the simplest and applicable to the field. In that case a value converged about 1.3, b value had a tendency to converge about 0.02. From the comparison analysis between measured data and load transfer function by 'LPILE', it is examined that if the lateral load is small, calculated displacements of them show a similar value compared to measured values. Furthermore, the bigger lateral loads, the bigger calculated values compared to the measured data. If the results are compared by Matlock-Reese method and Matlock-API method, Matlock-Reese method shows result of safe side because lateral displacement is calculated greatly relatively.

Side Shear Resistance of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.205-212
    • /
    • 2008
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into igneous-metamorphic rock was investigated. For that, 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were constructed at four different sites, and the static axial load tests were performed to examine the resistant behavior of the piles. A comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. The side shear resistance of rock socketed piles was found to have no intimate correlation with the compressive strength of the intact rock. However, the global rock mass strength, which was calculated by the Hoek and Brown criteria, was found to closely correlate to the side shear resistance. The ground investigation data regarding the rock mass conditions (e.g. $E_m$, $E_{ur}$, $p_{lm}$, RMR, RQD, j) were also found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.75 in most cases. Additionally, the applicability of existing methods for the side shear resistance of weathered granite-gneiss was verified by comparison with the field test data. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.15, and RQD is below 50%.

Estimation of Pile Ultimate Lateral Load Capacity in Sand Considering Lateral Stress Effect (응력상태를 고려한 사질토지반에 관입된 말뚝의 극한수평지지력 분석 및 평가)

  • Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Hwang, Sung-Wuk;Kim, Min-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • In this study, ultimate lateral load capacity of piles is analyzed with consideration of lateral stress effect. Based on results obtained in this study, a method for the estimation of ultimate lateral load capacity is proposed. This makes it possible to more realistically estimate the ultimate lateral load capacity under various stress states caused by in-situ soil condition and pile installation process. Calibration chamber test results with various soil conditions were used in the analysis. From the test results, it was found that effect of the lateral stress was greater than that of the vertical stress on the ultimate lateral load capacity of piles. It was also found that, as the relative density increases, displacements required to reach the ultimate state increases, showing relative displacements of around 14% and 18-25% for $D_R$ : 55% and 86%, respectively. Based on results obtained in this study, a methodology for the estimation of ultimate lateral load capacity of piles using correction factors was proposed. Results from proposed method matched well measured results.

Settlement Characteristics of Large Drilled Shafts Embedded in Bed Rocks (암반에 근입된 대구경 현장타설말뚝의 침하특성)

  • Hong Won-Pyo;Yea Geu-Guwen;Nam Jung-Man;Lee Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.111-122
    • /
    • 2005
  • The data on the pile load tests performed on 35 large drilled shafts are analyzed to investigate the load-settlement characteristics of large drilled shafts embedded in bed rocks. Generally, the settlement of large drilled shafts embedded in bed rocks is too small to determine the ultimated load with application of the regulation in design code for either the total settlement or the residual settlement. Therefore, to determine the yield load of large drilled shafts embedded in bed rocks, p(load)-logS (settlement) curve method, which has been proposed originally for the driven pile, was applied to the investigation on the data of the pile load tests. This technique shows that the yield load can be determined accurately and easily rather than other conventional techniques such as P-S, logp-logS, S-logt, and P-S curve methods. An empirical equation is proposed to represent the relationship between pile load and settlement before the yield loading condition. And the settlement of piles was related with the depth embedded in rock as well as rock properties. Based on the investigation on the data of pile load tests, the resonable regulations f3r both the total settlement and the residual settlement are proposed to determine the yield load of large drilled shafts embedded in bed rocks.

Effects of Lower-Bound Resistances on Resistance Factors Calibration for Drilled Shafts (하한지지력이 현장타설말뚝의 저항계수에 미치는 영향)

  • Kim, Seok-Jung;Park, Jae-Hyun;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.51-60
    • /
    • 2014
  • Load and Resistance Factor Design (LRFD) is one of the limit state design methods, and has been used worldwide, especially in North America. Also, the study for LRFD has been actively conducted in Korea. However, the data for LRFD in Korea were not sufficient, so resistance factors suggested by AASTTO have been used for the design in Korea. But the resistance factors suggested by AASHTO represent the characteristics of bedrocks defined in the US, therefore, it is necessary to determine the resistance factors for designs in Korea, which can reflect the characteristics of bedrocks in Korea. Also, the calculated probabilities of failure from conventional reliability analyses which commonly use log-normal distribution are not realistic because of the lower tail that can be extended to zero. Therefore, it is necessary to calibrate the resistance factors considering the lower-bound resistance. Thus, this study calculates the resistance factors using thirteen sets of drilled shaft load test results, and then calibrates the resistance factors considering the lower-bound resistance corresponding to a target reliability index of 3.0. As a result, resistance factors from conventional reliability analyses were determined in the range of 0.13-0.32 for the shaft resistance, and 0.19-0.29 for the base resistance, respectively. Also, the lower bounds of resistance were determined based on the Hoek-Brown failure criteria (2002) and GSI downgrading. Considering the lower-bound resistances, resistance factors increased by 0~8% for the shaft, and 0~13% for the base, respectively.

A Numerical Analysis Study for Estimation of Ultimate Bearing Capacity and An Analysis of the High Capacity Bi-directional Pile Load Tests of the Large-diameter Drilled Shafts (대구경 현장타설말뚝의 대용량 양방향 말뚝재하시험 분석 및 극한지지력 추정을 위한 수치해석 연구)

  • Nam, Moonsuk;Kim, Sangil;Hong, Seokwoo;Hwang, Seongchun;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.63-72
    • /
    • 2011
  • The high capacity bi-directional pile load test is an optimum pile load test method for high-rised buildings. Especially, a high pressure and double-acting bi-directional pile load testing, a special type of the high capacity bi-directional pile load test, is the most practical way to overcome limitations of loading capacities and constraints of field conditions, which was judged to be a very useful test method for requiring high loading capacities. Total of 2 high capacity bi-directional pile load tests(P-1 and P-2) were conducted in high-rised building sites in Korea. Based on the field load test results, the sufficiency ratio of loading capacities to design loads for P-1 and P-2 were 3.3 and 2.1, respectively. For P-2, the load test could not verify the design load if 1-directional loads applied slightly smaller than the actual applied load. Also, high capacity bi-directional pile load tests were difficult to determine an ultimate state of ground or piles, although the loads were applied until their maximum loads. Hence, finite element analyses were conducted to determine their ultimate states by calibrating and extrapolate with test results.