• Title/Summary/Keyword: 재하시간

Search Result 169, Processing Time 0.027 seconds

A Study on Similarity Rule of Loading Period and Thickness with One-dimensional Consolidation Process for Clay (점토의 1차원 압밀과정에 있어서 재하시간과 층두께에 대한 상사법칙에 관한 연구)

  • Kim, Jae Young;Ohshima, Akihiko
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.369-376
    • /
    • 2006
  • Similarity rule in order to predict the field settlement and consolidation time from oedometer test is not clear because of the thickness, loading time, rate of loading increase, dependence on strain inherent of clay. To investigate the one-dimensional consolidation tests with permeability tests varied loading period and specimen thickness were carried out the application of similarity rule. Main conclusions are 1) f(=1+e)-logk line is a unique property of the soil, 2) $c_{\nu}$, k need no correction, 3)similarity rule is depends on the positions of f-logp line and primary consolidation line.

Characteristics of Vacuum Consolidation by Comparing with Surcharge Loading Consolidation (성토재하공법과 비교한 진공압밀공법의 압밀특성 분석)

  • Sim, Dong-Hyun;Lee, Jae-Hwan;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5C
    • /
    • pp.201-208
    • /
    • 2010
  • In this study, the ground settlement was investigated by using monitoring data of the test sites where vacuum consolidation method and surcharge method were applied for improving deep soft soil. The monitoring data are chosen in ${\bigcirc}{\bigcirc}$ area port construction site reclaimed with very soft dredged clay. These data are analyzed to compare the consolidation characteristics between the different loading methods for soil improvement. Through analysis of the loading time, it is shown that the ground settlement reaches its allowable value under vacuum consolidation loading by about 45% faster than that of the surcharge loading consolidation. This could be explained that vacuum consolidation method makes the isotropic consolidation condition so that the time for reaching a certain final preloading without soil failure can be shortened.

Final Settlement Prediction Methods of Embankments on Soft Clay by Back Analysis (역해석에 의한 연약지반 최종침하량 추정)

  • Lim, Seong Hun;Kang, Yea Mook;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.247-259
    • /
    • 1998
  • Analyses which loads were regarded as instant load and gradual step load were performed with data measured on gradually loaded field, and the results were inspected to find effect of load condition, and final settlements predicted by Hyperbolic, Tan's, Asaoka's, and Monden's method were compared with each other. According to above analyses, the following conclusions were obtained. Settlement curves which loads were regarded as instant load and gradual step load were beginning to coincide at time of twice duration of embankment. On the ground installed vertical drain, the result of Hyperbolic, Tan's, Asaoka's, Monden's, curve fitting I, and curve fitting II (simple, Carrillo) methods make conclude that Asaoka, curve fitting I, and curve fitting II methods agree with measured settlement.

  • PDF

Stress-Strain-Strain Rate of Overconsolidated Clay Dependent on Stress and Time History (응력이력과 시간이력에 따른 과압밀점토의 응력-변형-변형률 속도)

  • 한상재;김수삼;김병일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.143-150
    • /
    • 2003
  • This study deals with the stress-strain-strain rate behaviour of overconsolidated clay. Consolidated-drained stress path tests were performed on the stress-time dependent condition. Stress history consists of rotation angle of stress path, overconsolidation ratio, and magnitude of length of recent stress path. Time history includes loading rate of recent and current stress path. Test results show that all influence factors have an increasing strain rate with time, and the strain rate varies with the change of the rotation angle of stress path. With the increase of overconsolidation ratio and loading rate of current stress path, the strain rate also increases. For the stress history, correlation between stress-strain and strain rate is indicated but the time history is not.

Simple Pile Loading Test(SPLT) Technique, Principle and Application (간편한 말뚝 재하시험(SPLT)의 개요와 적용)

  • 이명환;이장덕
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.53-64
    • /
    • 1990
  • There have been numerous methods proposed to predict the pile bearing capacity, but except for the prediction by the pile loading test, not one method is suitable to give a reliable result. Even so, the pile loading test has seldom been performed due to the time and money consuming procedures. In this research, a new way of carrying out the pile loading test, "Simple Pile Loading Test(SPLT)" is introduced. In SPLT technique, the test pile is designed to have a separable shoe with a reduced sized sliding core, so that the skin friction acts as the reaction force to cause the pile tip settlement. Therefore the preparation, installation, loading and unloading of the loading frames and the kentledge can be eliminated.liminated.

  • PDF

Creep Behaviour of Red Shale in the Haman Formation by Multi Stage Loading Test (다단계 재하시험에 의한 함안층 적색 셰일의 크리프특성)

  • Cho, Lae-Hun;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.165-175
    • /
    • 2009
  • This study is concerned with creep characteristics of red shale in the Haman Formation by the single stage and multi stage loading tests. Creep constants in the Griggs's experiential equation, ${\epsilon}_t$= a+$b{\cdot}log$ t + $c{\cdot}t$, are determined by regression analysis on the total data obtained. The transition time between the primary and second creep means the time when the differential value of $b{\cdot}log$ t is equal to the differential value of $c{\cdot}t$. The correlation equation between loads (${\sigma}$%) and creep constants is deduced from the three times multi stage loading tests. Also a failure time under each loads is anticipated from creep constants and maximum strain at the failure.

Calculation of Creep Coefficient for Concrete Structures Applying Time Step Analysis for Relative Humidity and Temperature (상대습도 및 온도에 대한 시간 단계 해석을 적용한 콘크리트 구조의 크리프계수 산정 )

  • Kyunghyun Kim;Ki Hyun Kim;Inyeol Paik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.75-83
    • /
    • 2023
  • As part of a study to analyze the excessive camber occurring in prestressed concrete railway bridges, this paper presents a calculation method and analysis results for the creep coefficient which defines the increase in camber of a concrete structure over time. Using the creep coefficient formula of the design code, the coefficient is obtained by applying the climatic conditions (relative humidity and temperature) of 12 regions in Korea. The effects of differences in climatic conditions by region and starting time of load on the creep coefficient are analyzed. In order to properly calculate the creep, most of which occurs in the early stages of loading, a detailed analysis is performed by applying a time step analysis method to consider varying climate conditions through loaded period. The creep coefficient obtained by applying the average climate conditions of the region is similar to the average of the creep coefficients obtained by time step analysis. Through time step analysis, it is shown that the offset and overlap effects of relative humidity and temperature on the creep coefficient and the climate effect at the time of initial loading can be appropriately represented.

Punching Shear Failure in Pile-Supported Embankments (말뚝으로 지지된 성토지반 내 펀칭전단파괴)

  • Hong, Won-Pyo;Song, Jei-Sang;Hong, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.35-45
    • /
    • 2010
  • The mechanism of load transfer by punching shear in pile-supported embankments is investigated. Based on the geometric configuration of the punching shear observed in sand fills on soft ground, a theoretical analysis is carried out to predict the embankment loads transferred on a cap beam according to punching shear developed in pile-supported embankments. The equation presented by the theoretical analysis was able to consider the effect of various factors affecting the vertical loads transferred on the cap beam. The reliability of the presented theoretical equation is investigated by comparing it with the results of a series of model tests. The model tests were performed on cap beams, which had two types of width; one is narrow width and the other is wide width. Sand filling was performed through seven steps. Two types of loading pattern were applied at each filling step; one is the long-term loading, in which sand fills at each filling step were kept for 24 hours, the other is the short-term loading, in which sand fills at each filling step were kept for 2 hours. The vertical loads measured in all model tests show good agreement with the ones predicted by the theoretical equation. Finally, the predicted vertical loads also show good agreement with the vertical loads measured in a well-instrumented pile-supported embankment in field, where cap beams were placed on too wide space.

An Experimental Study on The Fire Resistance Performance of Steel Framed motar Beam with Loading Condition (철골철망 모르타르 보의 재하하중에 따른 내화성능변화에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Cho, Bum-Yean;Yeo, In-Hwan;Min, Byung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.103-106
    • /
    • 2011
  • 국토해양부령 제320호인 건축물의 피난 방화구조 등의 기준에 관한 규칙 제 3조에서는 내화구조에 관한 세부기준을 정하고 있다. 이러한 법정내화구조 중에서 철골철망 모르타르조의 피복두께에 따른 내화성능 변화를 분석하기 위하여, 본 연구에서는 고온 재하하중조건에서 내화실험을 수행하였다. 철골조의 피복두께를 50 mm ${\cdot}$ 60 mm ${\cdot}$ 70 mm로 변화하여 내화실험을 수행하였으며, 재하하중비를 변화시킴으로 동일 피복두께에서의 내화성능 변화를 분석하고자 하였다. 실험결과 단면소성모멘트 대비 하중비 0.4 조건에서의 철골철망 모르타르조의 내화성능은 180분이 나왔으며, 피난 방화구조 등의 기준의 별표 1에서 정하고 있는 내화구조의 성능기준 중 최대 내화성능시간인 3시간을 확보하는 것으로 나타났다.

  • PDF