• Title/Summary/Keyword: 재실리모델링

Search Result 4, Processing Time 0.016 seconds

Estimation of Geochemical Evolution Path of Groundwaters from Crystalline Rock by Reaction Path Modeling (반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측)

  • 성규열;박명언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

The Change of Relationship between Spatial Configuration and Pedestrian Movement during Inhabited Remodeling - Focused on Coex Shipping Mall - (재실 리모델링 공사 기간 중 공간구조와 쇼핑객 통행량의 상관성 변화 연구 - 코엑스 쇼핑몰을 대상으로 -)

  • Kim, Min-Soo;Kim, Young-Ook
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.9
    • /
    • pp.11-18
    • /
    • 2019
  • Commercial facilities are put under construction for inhabited remodeling due to management or cost issues. Temporary facility planning is important in inhabited remodeling because building construction and management are simultaneously performed in this type of remodeling. The purpose of this research is to identify how the temporary spatial structure changes for each inhabited remodeling construction level of commercial facilities and existence of tenants affect the spatial usability. It also examines a relationship between the traffic flow and spatial configurations during the inhabited remodeling process where the tenants are temporarily removed and only the spatial configuration are maintained and verifies if the established theory that the spatial configurations in commercial facilities significantly affect the traffic is also valid during the inhabited remodeling process. The research result was found that the amount of traffic during the inhabited remodeling construction process is more affected by the factors such as tenants rather than spatial configurations. It is anticipated that the result of this research will serve as a guideline to establish logical inhabited remodeling plans for each level of constructing temporary facilities. Furthermore, it can be used to minimize the sales damage caused by the construction or as a guideline to determine the order of tenants to be moved into the new commercial facilities.

An Essay of the Reinforcing Effect of BNNT and CNT: A Perspective on Interfacial Properties (BNNT와 CNT의 강화효과에 대한 복합재 계면물성 관점의 고찰)

  • Seunghwa Yang
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.155-161
    • /
    • 2024
  • Boron nitride nanotubes and carbon nanotubes are the most representative one-dimensional nanostructures, and have received great attention as reinforcement for multifunctional composites for their excellent physical properties. The two nanotubes have similar excellent mechanical stiffness, strength, and heat conduction properties. Therefore, the reinforcing effect of these two nanotubes is greatly influenced by the properties of their interface with the polymer matrix. In this paper, recent comparative studies on the reinforcing effect of boron nitride nanotubes and carbon nanotubes through experimental pull-out test and in-silico simulation are summarized. In addition, the conflicting aspect of the two different nanotubes with structural defects in their side wall is discussed on the viscoelastic damping performance of nanocomposites.

The Results Comparison of Measurement and Simulations in ISL(Integrated Schottky Logic) Gate (ISL 게이트에서 측정과 시뮬레이션의 결과 비교)

  • 이용재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.157-165
    • /
    • 2001
  • We analyzed the electrical characteristics of platinum silicide schottky junction to develope the voltage swing in Integrated Schottky Logic gates, and simulated the characteristics with the programs in this junctions. Simulation programs for analytic characteristics are the Medichi tool for device structure, Matlab for modeling and SUPREM V for fabrication process. The silicide junctions consist of PtSi and variable silicon substrate concentrations in ISL gates. Input parameters for simulation characteristics were the same conditions as process steps of the device farications process. The analitic electrical characteristics were the turn-on voltage, saturation current, ideality factor in forward bias, and has shown the results of breakdown voltage between actual characteristics and simulation characteristics in reverse bias. As a result, the forward turn-on voltage, reverse breakdown voltage, barrier height were decreased but saturation current and ideality factor were increased by substrates increased concentration variations.

  • PDF