• Title/Summary/Keyword: 재순환 배기

Search Result 239, Processing Time 0.021 seconds

An Experimental Study on Simultaneous Reduction of Smoke and NOx with Biodiesel Fuel in a CRDI Type Diesel Engine (CRDI 방식 디젤기관에서 바이오디젤유 적용시 매연과 NOx의 동시저감에 관한 실험적 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.35-40
    • /
    • 2007
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong, In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated common rail diesel engine. The smoke emission of biodiesel fuel 5vol-%(min. content) was reduced in comparison with diesel fuel, that is, it was reduced approximately 60% at 4000rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emission of biodiesel fuel was increased compared with a commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with biodiesel fuel(5vol-%) and cooled EGR method($5{\sim}10%$) in a common rail diesel engine.

A Simultaneous Reduction of Smoke and $NO_X$ with Biodiesel Fuel in a D. I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤유 적용시 매연과 $NO_X$의 동시저감)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.65-71
    • /
    • 2005
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated D.I. diesel engine. The smoke emission of biodiesel fuel was reduced remarkably in com parison with diesel fuel, that is, it was reduced approximately 48.5% at 2500rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, $NO_X$ emission of biodiesel fuel was increased com pared with commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of $NO_X$ emission has been investigated. It was found that simultaneous reduction of smoke and $NO_X$ was achieved with biodiesel fuel(20vol-%) and cooled EGR method($5{\sim}15%$).

A Study on Effect of the Intake Valve Timing and Injection Conditions on the PCCI Engine Performance (흡기밸브 닫힘 시기와 분사조건이 PCCI 엔진의 성능에 미치는 영향에 관한 연구)

  • Lee, Jae-Hyeon;Kim, Hyung-Min;Kim, Yung-Jin;Lee, Ki-Hyung
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • As world attention has focused on global warming and air pollution, high efficiency diesel engines with low $CO_2$ emissions have become more attractive. Premixed diesel engines in particular have the potential to achieve the more homogeneous mixture in the cylinder which results in lower NOx and soot emission. Early studies have shown that the operation conditions such as the EGR, intake conditions, injection conditions and compression ratio are important to reduce emissions in a PCCI (Premixed Charge Compression Ignition) engine. In this study a modified cam was employed to reduce the effective compression ratio. While opening timing of the intake valve was fixed, closing timing of the intake valve was retarded $30^{\circ}$. Although Atkinson cycle with the retarded cam leads to a low in-cylinder pressure in the compression stroke, the engine work can still be increased by advanced injection timing. On that account, we investigated the effects of various injection parameters to reduce emission and fuel consumption; as a result, lower NOx emission levels and almost same levels of fuel consumption and PM compared with those of conventional diesel engine cam timing could be achieved with the LIVC system.

Effect of Injection Pressure on Low Temperature Combustion in CI Engines (압축착화 엔진에서 분사압이 저온연소에 미치는 영향)

  • Jang, Jaehoon;Lee, Sunyoup;Lee, Yonggyu;Oh, Seungmook;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • Diesel low temperature combustion (LTC) is the concept where fuel is burned at a low temperature oxidation regime so that $NO_x$ and particulate matters (PM) can simultaneously be reduced. There are two ways to realize low temperature combustion in compression ignition engines. One is to supply a large amount of EGR gas combined with advanced fuel injection timing. The other is to use a moderate level of EGR with fuel injection at near TDC which is generally called Modulated kinetics (MK) method. In this study, the effects of fuel injection pressure on performance and emissions of a single cylinder engine were evaluated using the latter approach. The engine test results show that MK operations were successfully achieved over a range of with 950 to 1050 bar in injection pressure with 16% $O_2$ concentration, and $NO_x$ and PM were significantly suppressed at the same time. In addition, with an increase in fuel injection pressure, the levels of smoke, THC and CO were decreased while $NO_x$ emissions were increased. Moreover, as fuel injection timing retarded to TDC, more THC and CO emissions were generated, but smoke and $NO_x$ were decreased.

Influence of Propane and Butane on Engine Performance in a Homogeneous Charge Compression Ignition(HCCI) Engine (균질혼합압축점화기관에서 프로판과 부탄연료가 기관성능에 미치는 영향)

  • Choi Gyeung Ho;Kim Ji Moon;Han Sung Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.417-423
    • /
    • 2005
  • This paper describes the engine performance of a Homogeneous Charge Compression Ignition(HCCI) engine according to Exhaust Gas Recirculation(EGR), cylinder-to-cylinder, fuel of propane and butane. HCCI engines are being considered as a future alternative for diesel and gasoline engines. HCCI engines have the potential for high efficiency, very low NOx emissions and very low particulate matter(PM). On experimental work, we have done an evaluation of operating conditions in a 4-cylinder compression engine. The engine has been run with propane and butane fuels at a constant speed of 1800rpm. This work is intended to investigate the HCCI operation of the engine in this configuration that has been modified from the base diesel engine. The performance and emissions of the engine are presented. In this paper, the start of combustion(SOC) is defined as the $50{\%}$ point of the peak rate of heat release. SOC is delayed slightly with increasing EGR. As expected, NOx emissions were very low for all EGR range and nbuned HC and CO emission levels were high. CO and HC emissions are lower with using propane than butane as fuels of HCCI engines.

Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber (Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF

EGR Effects on Exhaust Gas of Heavy-Duty Turbo Charge Engine with Low Pressure Route System (저압방식을 적용한 대형과급기관의 배기가스에 관한 EGR효과)

  • 오용석
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.58-62
    • /
    • 2002
  • The efforts of EGR on performance and emissions were investigated in this study. The engine used for the tests was a six-cylinder, 11 liter, and turbo-charged, heavy-duty diesel engine with a low pressure route ECR system. The volume of recirculated gas was controlled by a manually operated valve which was installed between the turbine outlet and compressor inlet. The experiments were performed at various engine speeds and loads while the ECR rates were set at 4% and 8%. Exhaust emissions with EGR system were compared with the baseline emissions.

  • PDF

A Experimental Study on Nitrous Oxide Formation in Direct Injection Diesel Engine (직접분사식 디젤엔진에서 아산화질소의 생성에 관한 실험적 연구)

  • Yoo, Dong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2015
  • It has been generally recognized that $N_2O$(Nitrous Oxide) emission from marine diesel engines has a close correlation with $SO_2$(Sulfur Dioxide) emission, and diversity of fuel elements using ships affects characteristics of the $N_2O$ emission. According to recent reports, in case of existence of an enough large NO(Nitric Oxide) generated as fuel combustion, effect of the $SO_2$ emission in exhaust gas on the $N_2O$ formation is more vast than effect of the NO. Therefore, $N_2O$ formation due to the $SO_2$ element operates on a important factor in EGR(Exhaust Gas Recirculation) systems for NOx reduction. An aim of this experimental study is to investigate that intake gas of the diesel engine with increasing of $SO_2$ flow rate affects $N_2O$ emission in exhaust gas. A test engine using this experiment was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition was set up at a 75% load. A standard $SO_2$ gas with 0.499%($m^3/m^3$) was used for changing of $SO_2$ concentration in intake gas. In conclusion, the diesel fuel included out sulfur elements did mot emit the $SO_2$ emission, and the $SO_2$ emission in exhaust gas according as increment of the $SO_2$ standard gas had almost the same ratio compared with $SO_2$ rate in mixture inlet gas. Furthermore, the $N_2O$ element in exhaust gas was formed as $SO_2$ mixture in intake gas because increment of $SO_2$ flow rate in intake gas increased $N_2O$ emission. Hence, diesel fuels included sulfur compounds were combined into $SO_2$ in combustion, and $N_2O$ in exhaust gas should be generated to react with NO and $SO_2$ which exist in a combustion chamber.

An Experimental Study on Application of UBD20 according to EGR Rate in a CRDI Type Diesel Engine (CRDI 방식 디젤기관의 EGR율에 따른 UBD20 적용에 관한 실험 연구)

  • Shin, Seo-Yong;Im, Seok-Yeon;Jung, Young-Chul;Choi, Doo-Seuk;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.137-143
    • /
    • 2007
  • An object of this study is to understand the application characteristics in accordance with changes of EGR rate, applying BD20 reformed by ultrasonic energy irradiation to common-rail diesel engine. BD containing about 10% oxygen has attracted attention due to soaring crude oil prices and environmental pollution. This oxygen decreases soot by promoting combustion, but it also increases NOx. To make up for this problem, an EGR system is applied so that NOx might be decreased. In that case, engine power is lowered and exhaust gas is raised. However, the reformed fuel by ultrasonic energy irradiation is changed physically and chemically, promotes combustion, and thus solves such a problem. As the results of the experimemt, we could identify the optimum EGR rate by investigating the engine performance and the characteristics of exhaust materials in accordance with the EGR rate after ultrasonic energy irradiation to BD20 and applying it to common-rail diesel engine. The optimum EGR rate that can satisfy both engine performance and characteristics of exhaust materials was in the range of 15%.

Effect of Fast ATF Warm-up on Fuel Economy Using Recovery of EGR Gas Waste Heat in a Diesel Engine (EGR 가스 폐열회수에 의한 디젤엔진의 연비에 미치는 ATF 워밍업의 영향)

  • Heo, Hyung-Seok;Lee, Dong-Hyuk;Kang, Tae-Gu;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2012
  • Cold start driving cycles exhibit an increases in friction losses due to the low temperatures of metal components and media compared to the normal operating engine conditions. These friction losses are adversely affected to fuel economy. Therefore, in recent years, various techniques for the improvement of fuel economy at cold start driving cycles have been introduced. The main techniques are the upward control of coolant temperature and the fast warm-up techniques. In particular, the fast warm-up techniques are implemented with the coolant flow-controlled water pump and the WHRS (waste heat recovery system). This paper deals with an effect of fast ATF (automatic transmission fluid) warm-up on fuel economy using a recovery system of EGR gas waste heat in a diesel engine. On a conventional diesel engine, two ATF coolers have been connected in series, i.e., an air-cooled ATF cooler is placed in front of the condenser of air conditioning system and a water-cooled one is embedded into the radiator header. However, the new system consists of only a water-cooled heat exchanger that has been changed into the integrated structure with an EGR cooler to have the engine coolant directly from the EGR cooler. The ATF cooler becomes the ATF warmer and cooler, i.e., it plays a role of an ATF warmer if the temperature of ATF is lower than that of coolant, and plays a role of an ATF cooler otherwise. Chassis dynamometer experiments demonstrated the fuel economy improvement of over 2.5% with rapid increase in the ATF temperature.