• Title/Summary/Keyword: 재비행

Search Result 236, Processing Time 0.02 seconds

Research and Development Trends of a Hypersonic Glide Vehicle (HGV) (극초음속 활공 비행체(HGV)의 연구개발 동향)

  • Hwang, Ki-Young;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.731-743
    • /
    • 2020
  • The hypersonic glide vehicle ascends to a high altitude by a rocket booster, separates it from the booster, and glides at a hypersonic speed of Mach 5 or higher at an altitude of about 30~70 km, changing its direction in the atmosphere. Since it moves on an unpredictable flight path rather than a parabolic trajectory, it is difficult to intercept with current missile defense systems. The U.S. conducted HTV-2 and AHW flight tests in the early 2010s to confirm the possibility of hypersonic gliding flights, and recently it has been developing hypersonic glide vehicle systems such as LRHW and ARRW. China has conducted several flight tests of the DF-ZF (WU-14) glide vehicle since 2014 and has been operating it with DF-17 missiles. Russia has conducted hypersonic glide vehicle research since the former Soviet Union, but it has repeatedly failed, and recently it has been successfully tested with the Avangard (Yu-71) glide vehicle mounted on the SS-19 ICBM. In this paper, the characteristics, flight test cases, and development trends of hypersonic glide vehicles developed or currently being developed in the United States, China, Russia, Japan, India, and Europe are reviewed and summarized.

Conceptual Design Study of Two-Stage Hypersonic Scramjet Vehicle (2단 초음속 스크램제트 비행체의 개념설계 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Yang, Soo-Seok;Park, Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • In this study, two-stage hypersonic scramjet vehicle was designed for the flight condition of Mach number 6. In order to launch at sea level, two stage concept was applied. The first stage of the vehicle is solid rocket-powered and is mounted under the second stage. The second stage is powered by scramjet propulsion system and gas wings. The suggested mission scenario is to deliver 0.2 ton payload to the range of 2,000 km. For the first step of conceptual design, trajectory of air vehicle was calculated by 3-DOF trajectory code. Based on the result of trajectory code, scramjet engine design and mass estimation were performed by non-equilibrium nozzle flow code and NASA's HASA model, respectively. In order to find best solution, all steps of designing process was iterated until they was reached.

Design and Ground Test of Propeller for 50 m-long Airship Propulsion (50 M급 비행선 추진용 프로펠러 설계 및 지상성능시험)

  • Kim,Hyeong-Jin;Lee,Chang-Ho;Jeon,Seong-Min;Im,Byeong-Jun;Lee,Jin-Geun;Yang,Su-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.112-119
    • /
    • 2003
  • Design analysis and grow1d test on propellers for 50 m-long airship propulsion were conducted. The design analysis code developed by adopting the vortex-blade-element theory was applied to the design of optimum propeller at the condition of maximum flight speed at sea level. In order to validate the performance of the propeller, ground test of the propeller was performed, and thrust and torque were measured for several different pitch angles at static condition. The power coefficients and thrust coefficients obtained by the test compared well with the analysis results.

Conceptual Design Study of Two-Stage Hypersonic Scramjet Vehicle (2단 초음속 스크램제트 비행체의 개념설계 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Yang, Soo-Seok;Park, Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.309-317
    • /
    • 2011
  • In this study, two-stage hypersonic scramjet vehicle was designed for the flight condition of Mach number 6. In order to launch at sea level and Mach number 0, two stage concept was applied. The first stage of the vehicle is rocket-powered and is mounted under the second stage. The second stage is scramjet-powered propulsion system and has wing. The suggested mission scenario is to deliver 0.2 ton payload to the range less of 2000km. For the first step of conceptual design, trajectory of air vehicle was calculated by 3-DOF trajectory code. Based on the result of trajectory code, scramjet engine design and mass estimation were performed by non-equilibrium nozzle flow code and NASA's HASA model, respectively. In order to find best solution, all step of designing process was iterated until they were converged.

  • PDF

Design a Path Following Line-of-Sight Guidance Law based on Vehicle Kinematics (비행체 운동 역학 기반 경로 추종 시선각 유도 법칙 설계)

  • You, Dong-Il;Shim, Hyun-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.506-514
    • /
    • 2012
  • This paper represents a method for designing of path following Line-of-Sight(LOS) guidance law based on vehicle kinematics. In general, a LOS guidance law which is composed of gains and approach length as design parameters is designed by empirical or trial-and-error method. These approaches cannot guarantee a precision tracking performance of guidance law consistently. Also, the design parameters should be redesigned with variations of vehicle maneuverability and flight velocity. Based on a vehicle kinematics with its velocity, the proposed method for designing of parameters not only minimizes the number of design parameters, also has a reliable and consistent tracking performance using variable guidance gain changed in accordance with flight velocity. This is validated by nonlinear simulation with $1^{st}$ order attitude response dynamics and flight experiments with given linear and circular path.

Conceptual Design and Flight Testing of a Synchropter Drone (Synchropter 드론의 개념설계 및 비행시험)

  • Chung, Injae;Moon, Jung-ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.997-1004
    • /
    • 2020
  • A synchropter is a type of rotorcraft in which a pair of blades inclined with each other rotates in synchronization. Removing the tail rotor enables an efficient and compact configuration similar to a coaxial-rotor helicopter. This paper describes the design and flight test results of a small synchropter to examine the suitability of a drone system for the army. The synchropter in this paper is a small vehicle with a rotor diameter of 1.4m and a weight of 7kg and was assembled based on commercial parts to examine flight characteristics effectively. The flight control system adopted Pixhawk, which is designed based on an open-architecture. The model-based design technique is applied to develop the control law of the synchropter and a new firmware embedded on the Pixhawk. Through qualitative flight tests, we analyzed the flight characteristics. As a result of the analysis, we confirmed the possibility of application as a drone system of the synchropter.

An Experimental Study of Aeroelastic Stability of Hingeless Hub System with Metal and Composite Hub Flexure (금속재와 복합재 허브 Flexure를 갖는 무힌지 허브시스템의 공력탄성학적 안정성에 관한 실험적 연구)

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan;Rhee, Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • This paper presents the result of the aeroelastic stability test of the small-scaled hingeless hub system with composite paddle blades in hover and forward flight conditions. Excitation tests of hingeless hub system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were carried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, blades with metal flexures, then with composite flexures of the same dynamic properties of rotor system as metal one were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Composite flexures were found to have better damping characteristics over metal ones in the non-rotating vibration test, and it was confirmed that the use of composite flexures would give observable improvement in aeroelastic stability compared to metal ones in all test conditions.

AERODYNAMIC ANALYSIS OF SUB-ORBITAL RE-ENTRY VEHICLE (저궤도 재진입 비행체의 공력해석)

  • Kim, C.W.;Lee, Y.G.;Lee, D.S.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • For Aerodynamic analysis of vehicle at altitude, 100km, the validity of governing equations based on continuum model, was reviewed. Also, as the preliminary study for the sub-orbital space plane development, a candidate geometry was suggested and computational fluid dynamic(CFD) analysis was performed for various angles of attack in subsonic and supersonic flow regimes to analyze the aerodynamic characteristics and performance. The inviscid flow analyses showed that the stall starts at angle of attack above $20^{\circ}$, the maximum drag is generated at angle of attack, $87^{\circ}$ and the maximum lift to drag ratio is about 8 in subsonic flow. In supersonic, the stall angle is about $40^{\circ}$ and the maximum drag is generated at angle of attack, $90^{\circ}$. Also, mach number distribution of re-entry vehicle was computed versus altitudes.

Current Status of Ceramic Composites Technology for Space Vehicle (우주비행체용 세라믹 복합재료 해외기술 동향)

  • Lee, Ho-Sung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.76-84
    • /
    • 2009
  • In this review an attempt is made to give the background to the current trends in foreign developments in the ceramic matrix composites for space vehicles. The lightweight and high temperature specific modulus properties of ceramic composites have continued to develop for designing advanced propulsion structures and for increasing space vehicle performances. Those applications require advanced materials with good resistance to high temperatures, to oxidation environments and to mechanical stresses. The advantages of ceramic matrix composites are the low specific weight, the high specific strength over a wide temperature ranges, and their good damage tolerance compared to tungsten, pyrographites and polycrystalline graphites. Due to these advantages ceramic matrix composites are currently used in rocket engine chamber, nozzle, solar array, radar antenna, mirror support structures, hypersonic leading edge articles, heat shields, reentry vehicle nose tips, and radiators for spacecraft. Various processes are discussed together with examples of current application so that some of the advanced technologies can be possibly applied to Korean space technology.

  • PDF