• Title/Summary/Keyword: 재무적.비 재무적 성과

Search Result 574, Processing Time 0.023 seconds

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

The Study on the College Students' Career Reasons Affecting on Self-efficacy and Entrepreneurial Intention (대학생의 직업선택 동기가 창업에 대한 자아효능감과 창업의지에 미치는 영향에 대한 연구)

  • Lee, Woo Jin
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.8 no.3
    • /
    • pp.113-124
    • /
    • 2013
  • The government strives to create venture ecosystem for realizing creative economy, at the same time, the Mistry of Education is spending huge resources and efforts to spread entrepreneurship education to universities in Korea. Since entrepreneurship education gives motivation to individuals and creates market innovation and these connect to the growth of national economy through increased efficiency, entrepreneurship education is becoming increasingly more important for realizing creative economy. Based on the importance, entrepreneurship education in the universities is now spreading rapidly. However, college students' entrepreneurial intention has still not been improved comparing to spreading entrepreneurship education. To overcome the poor improvement, entrepreneurship education needs to be driven more systematic direction through the study on the effect of students' motivation and environment. In this study, entrepreneurship as a part of careers perspectives, is analyzed on students' career reasons with entrepreneurial intention. For this study, 918 surveys was collected from 7 universities having entrepreneurship courses in Seoul and Gyeonggi regions in 2012 and analyzed 858 surveys in order to prove the hypothesis. The results disclosed the relationship between students' career reasons and entrepreneurial self-efficacy and intention. Motivation factors of self-realization, innovation and role model have positive effect on entrepreneurial self-efficacy following by increased entrepreneurial intention, unlike the common notion financial success and independence factors are not significant with entrepreneurial intention of students. Based on these results having meaningful implication to Korea entrepreneurship education, this study is expected to have contribution to the successful promoting the creative economy realization of our government.

  • PDF

Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil (항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong;Jung, Jae-Woon;Yoon, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.853-860
    • /
    • 2012
  • To estimate potential use of fly ash in reducing $CH_4$ and $CO_2$ emission from soil, $CH_4$ and $CO_2$ fluxes from a paddy soil mixed with fly ash at different rate (w/w; 0, 5, and 10%) in the presence and absence of fertilizer N ($(NH_4)_2SO_4$) addition were investigated in a laboratory incubation for 60 days under changing water regime from wetting to drying via transition. The mean $CH_4$ flux during the entire incubation period ranged from 0.59 to $1.68mg\;CH_4\;m^{-2}day^{-1}$ with a lower rate in the soil treated with N fertilizer due to suppression of $CH_4$ production by $SO_4^{2-}$ that acts as an electron acceptor, leading to decreases in electron availability for methanogen. Fly ash application reduced $CH_4$ flux by 37.5 and 33.0% in soils without and with N addition, respectively, probably due to retardation of $CH_4$ diffusion through soil pores by addition of fine-textured fly ash. In addition, as fly ash has a potential for $CO_2$ removal via carbonation (formation of carbonate precipitates) that decreases $CO_2$ availability that is a substrate for $CO_2$ reduction reaction (one of $CH_4$ generation pathways) is likely to be another mechanisms of $CH_4$ flux reduction by fly ash. Meanwhile, the mean $CO_2$ flux during the entire incubation period was between 0.64 and $0.90g\;CO_2\;m^{-2}day^{-1}$, and that of N treated soil was lower than that without N addition. Because N addition is likely to increase soil respiration, it is not straightforward to explain the results. However, it may be possible that our experiment did not account for the substantial amount of $CO_2$ produced by heterotrophs that were activated by N addition in earlier period than the measurement was initiated. Fly ash application also lowered $CO_2$ flux by up to 20% in the soil mixed with fly ash at 10% through $CO_2$ removal by the carbonation. At the whole picture, fly ash application at 10% decreased global warming potential of emitted $CH_4$ and $CO_2$ by about 20%. Therefore, our results suggest that fly ash application can be a soil management practice to reduce green house gas emission from paddy soils. Further studies under field conditions with rice cultivation are necessary to verify our findings.