• Title/Summary/Keyword: 재료 물성감소

Search Result 410, Processing Time 0.025 seconds

The Study on the Development of Environmental-friendly Surface Material Using Condensed Tannin (축합형 탄닌을 이용한 친환경 건축마감재 개발에 관한 연구)

  • Jo, Jae-Min;Park, Moon-Soo;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • Medium-density fiberboard (MDF) is widely used as an indoor building materials. However, formaldehyde resins, commonly used to bind MDF together, emit formaldehyde and other volatile organic compounds that cause health risk at sufficient concentration. In this study, condensed tannin having formaldehyde absorption ability was used to solve the problem of formaldehyde emission generated from surface material. The synthesis of melamine-formaldehyde resin and reaction of melamine-formaldehyde and condensed tannin were analyzed by FT-IR spectrum. Also surface properties, such as shear force, impact strength, tape adhesion, pencil hardness and gloss retention were measured. Free formaldehyde analysis was performed to analyze remaining unreacted formaldehyde. According to the results, the optimum shear force and impact strength could be obtained by 10 wt.% usage of condensed tannin. In cases of pencil hardness and gloss retention, the optimum properties could be obtained at 20 wt.% of condensed tannin. The amounts of formaldehyde emission of surface material containing 20 wt.% of condensed tannin was 59 ${\mu}g/m^2{\cdot}h$. The amounts of formaldehyde emission could be reduced 3 times by using 20 wt.% of condensed tannin.

The effect of the strength and wetting characteristics of Bis-GMA/TEGDMA-based adhesives on the bond strength to dentin (2,2-Bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane을 함유한 상아질 접착레진의 물성이 접착강도에 미치는 영향)

  • Park, Eun-Sook;Kim, Chang-Keun;Bae, Ji-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.139-148
    • /
    • 2011
  • Objectives: This study investigated the effect of the strength and wetting characteristics of adhesives on the bond strength to dentin. The experimental adhesives containing various ratios of hydrophobic, low-viscosity Bis-M-GMA, with Bis-GMA and TEGDMA, were made and evaluated on the mechanical properties and bond strength to dentin. Materials and Methods: Five experimental adhesives formulated with various Bis-GMA/Bis-MGMA/TEGDMA ratios were evaluated on their viscosity, degree of conversion (DC), flexural strength (FS), and microtensile bond strength (MTBS). The bonded interfaces were evaluated with SEM and the solubility parameter was calculated to understand the wetting characteristics of the adhesives. Results: Although there were no significant differences in the DC between the experimental adhesives at 48 hr after curing (p > 0.05), the experimental adhesives that did not contain Bis-GMA exhibited a lower FS than did those containing Bis-GMA (p < 0.05). The experimental adhesives that had very little to no TEGDMA showed significantly lower MTBS than did those containing a higher content of TEGDMA (p < 0.05). The formers exhibited gaps at the interface between the adhesive layer and the hybrid layer. The solubility parameter of TEGDMA approximated those of the components of the primed dentin, rather than Bis-GMA and Bis-M-GMA. Conclusions: To achieve a good dentin bond, a strong base monomer, such as Bis-GMA, cannot be completely replaced by Bis-M-GMA for maintaining mechanical strength. For compatible copolymerization between the adhesive and the primed dentin as well as dense cross-linking of the adhesive layer, at least 30% fraction of TEGDMA is also needed.

The Effect of Heat Treatment Condition on the Mechanical Properties of oxi-PAN Based Carbon Fiber (Oxi-PAN 섬유를 기반으로 제조한 탄소섬유의 탄화 조건에 따른 구조 및 물성의 변화)

  • Choi, Kyeong Hun;Heo, So Jeong;Hwang, Sang-Ha;Bae, Soo Bin;Lee, Hyung Ik;Chae, Han Gi
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.385-391
    • /
    • 2018
  • In this study, carbon fibers were fabricated via carbonization of oxidized polyacrylonitrile (oxi-PAN) under different carbonization conditions. Carbonization of oxi-PAN fiber was performed under four different temperature (1300, 1400, 1500, $1600^{\circ}C$) with four different fiber tensions (14, 25, 35, 45 MPa). Effect of carbonization process on the structural development and mechanical properties of carbon fiber were characterized by single filament fiber tensile test and Raman spectroscopy. A clear correlation exists between the Raman spectrum and the tensile modulus of carbon fiber and effect of carbonization temperature on the tensile modulus showed increased tendency only at higher fiber tension (${\geq}25MPa$) while tensile strength showed decreased or random tendency. Therefore, it may be concluded that the optimization of carbonization temperature of oxi-PAN fiber also requires optimization of fiber tension.

A study on the optimum ratio of the ingredients in preparation of black sesame gruels (흑임자죽 재료배합비의 최적화 연구)

  • 박정리;김종군;김정미
    • Korean journal of food and cookery science
    • /
    • v.19 no.6
    • /
    • pp.685-693
    • /
    • 2003
  • The aim of this study was to develop a standardized recipe for black sesame gruel that has been preferred for generations as a nutritional food. The method focused on optimizing the mixing ratio of the components to improve the quality of the black sesame gruels that modem consumers would like. The results are summarized as follows: The more black sesame added to the gruel, the lower its brightness was, but the redness and yellowness was higher. The amount of black sesame made a significant difference in the viscosity, color, nutty taste, bitterness, appearance and overall preference. It was highest in the overall preference when the amount of black sesame was added 33g(40% of rice weight basis). Different types of rice were added to the black sesame gruel, and it was observed that the color value of the gruel was high in its brightness, redness and yellowness when 50g(60%) of glutinous rice was added to it. The black sesame gruel was most preferred when 50g of non-glutinous rice was added. The redness value was high when 15g(18%) of non-glutinous rice flour was added. The yellowness value was high when 25g(30%) of non-glutinous rice flour was added. This observation showed significant differences in the viscosity, color, nutty taste, bitterness, appearance and overall preference. In particular, the black sesame gruel was most preferred when 50g of non-glutinous rice flour was added. The addition of 7g(9%) of salt to the black sesame gruel showed the highest brightness. The redness and yellowness was the highest when 5g(6%) of salt was added. This observation showed a significant difference in the viscosity, color, nutty taste, bitterness, appearance and overall preference. The highest preference was observed when 2.5g(3%) of salt was added. Adding more materials increased the viscosity of the black sesame gruel. With increasing temperature, the viscosity became lower, and vice versa. The intensity of sweetness and spreadability was found to be proportional to the amount of additive material. In conclusion, the optimum recipe for black sesame gruels was obtained 33g(40%) of black sesame, 50g(60%) of glutinous rice (flour), 2.5g of salt, and 500$m\ell$ of water.

Changes in occlusal force depending on the movement of the adjacent and opposing teeth after loss of lower first molar: comparative study by using a strain gauge (하악 제1대구치 상실 시 인접 및 대합 치아들의 이동양상에 따른 교합력 변화: 스트레인게이지를 이용한 비교 연구)

  • Song, Myoung-Ja;Park, Ji-Man;Chun, Youn-Sic
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.47-59
    • /
    • 2016
  • Purpose: The aim of this study was to investigate the changes in occlusal force after loss of the lower first molar depending on the inclination and extrusion of the adjacent and opposing teeth by using a strain gauge. Materials and Methods: Anatomic teeth were used to reconstruct the normal dental arch with loss of the lower right first molar. A uniformly thick layer of silicone was applied to the root to mimic the periodontal ligament. Four stages of dies with varying degrees of inclination and extrusion of the adjacent and opposing teeth were constructed and attached to master model interchangeably by using a CAD/CAM fabricated customized die system. The strain gauges were attached to teeth and a universal testing machine was used to determine the changes in occlusal force. An independent t-test and one-way ANOVA were performed (${\alpha}=.05$). Results: While simulating chewing food, the upper first, second premolar and lower second molar showed greater occlusal force than before extraction. When the change of adjacent teeth's occlusal force with their progressive movement after molar loss was evaluated, the difference among four die models was significant and was in the decreasing aspect (P < 0.05). Conclusion: When the lower first molar was lost and the adjacent teeth did not move yet, the occlusal force in adjacent teeth was higher than that when the lower first molar still existed. In addition, the occlusal force in the upper premolars and lower second molar decreased significantly with the progressive movement of adjacent teeth.

Laboratory Evaluation of Polysulfide Epoxy Overlay Material for Bridge Deck (교면포장용 폴리설파이드 에폭시재료의 실내물성 평가)

  • Kim, Jun-Hyung;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • This research was performed to evaluate physical properties of polysulfide epoxy overlay material for bridge deck as part of a review for possibility of domestic application of polymer concrete for bridge deck pavement. In order to evaluate strength characteristics, compressive strength, flexural strength and bond strength were tested, and, for durability characteristics, chloride ion penetration resistance and freeze/thaw resistance were tested along with ultraviolet rays impact evaluation. The tests showed that the results met the criteria suggested by the American Concrete Institute in terms of compressive strength, flexural strength and bond strength. However, in terms of the strengths measured at various test temperatures, it was found that the epoxy material was highly dependent on temperature, and, therefore, this should be considered at the time of domestic application of the epoxy material later. Deflection characteristics was checked through flexural strength test and it was found that bridge deck pavement using the epoxy material was excellent compared to bridge deck pavement using asphalt. Furthermore, the results of chloride ion penetration resistance test and freeze/thaw resistance test were also excellent. In the evaluation of ultraviolet rays impact on epoxy slurry mixture, reduction of strain was noticed with increased strength, but the deflection characteristics after exposure to ultraviolet rays was better than the existing acryl polymer concrete. Therefore, it is concluded from the research that the polysulfide epoxy overlay material has the physical properties that are appropriate to pavement of bridge deck.

Evaluation of the Relationship between Geogrid Rib Size and Particle Size Distribution of Ballast Materials using Discrete Element Method (개별요소해석법을 이용한 지오그리드 격자 크기와 도상자갈재료 입도분포 상관관계 평가)

  • Pi, Ji-Hyun;Oh, Jeongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • This study evaluated the shear behavior of geogrid reinforced ballast material using a large scale direct shear test and discrete element method (DEM) based on PFC 3D program. The direct shear test was conducted on ballast materials that have different particle size distributions. Whereas the test results revealed that the shear strength generally increased with the larger particle size of ballast material without geogrid reinforcement, the shear behavior of ballast material was found to change pertaining to the relationship between particle size distribution and geogrid rib size. Generally, it is deemed the effectiveness of reinforcement can be achieved when the rib size is two times greater than average particle size. A numerical analysis based on DEM was conducted to verify the test results. The geogrid modeling was successfully completed by calibration process along with sensitivity analysis to have actual tensile strength provided by manufacturer. With a given geogrid model, the parametric evaluation was further carried out to examine the interactive behavior between geogrid and ballast material. Consequently, it was found that the effectiveness zone of geogrid reinforcement generated within a specific depth.

Interfacial and Surface Energies Evaluation of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) Composites using Micromechanical Technique and Contact Angle Measurement (미세역학시험법과 접촉각 측정을 통한 변형된 Jute와 Hemp섬유 강화 Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) 복합재료의 계면 및 표면에너지 평가)

  • Park, Joung-Man;Son, Tran Quang;Jung, Jin-Gyu;Kim, Sung-Ju;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.1-11
    • /
    • 2006
  • Interfacial evaluation of the untreated and treated Jute and Hemp fibers reinforced different matrix polypropylene-maleic anhydride polypropylene copolymer (PP-MAPP) composites were investigated by micromechanical technique and dynamic contact angle measurement. For the statistical tensile strength of Jute and Hemp fibers, bimodal Weibull distribution was fitted better than the unimodal distribution. The acid-base parameter on the interfacial shear strength (IFSS) of the natural fiber composites was characterized by calculating the work adhesion, $W_a$. The effect of alkaline, silane coupling agent on natural fibers were obtained with changing MAPP content in PP-MAPP matrices. Alkaline treated fibers made the surface energy to be higher due to removing the weak boundary layers and thus increasing surface area, whereas surface energy of silane treated Jute and Hemp fibers decreased due to blocked high energy sites. MAPP in the PP-MAPP matrix caused the surface energy to increase due to introduced acid-base sites. Microfailure modes of two natural fiber composites were observed clearly differently due to different tensile strength of natural fibers.

  • PDF

The Effect of Mg/W Addition on the Metal-insulator Transition of VO2 Using Spark Plasma Sintering (통전활성소결법으로 제조한 VO2의 금속-절연체 전이 특성에 W와 Mg 첨가가 미치는 영향)

  • Jin, Woochan;Kim, Youngjin;Park, Chan;Jang, Hyejin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.63-69
    • /
    • 2022
  • Vanadium dioxide shows a unique and interesting property of metal-insulator transition, which has attracted great attention from the viewpoints of fundamental materials science and industrial applications. In this study, the effect of Mg and W addition on the metal-insulator transition of VO2 were investigated for the bulk materials that are prepared by spark plasma sintering. The X-ray diffraction analysis of the sintered specimens revealed that the lattice parameters barely change, and the secondary phases are present. The transition temperature of MIT appears in the range of 64.2-64.6℃, regardless of the impurity element and content. On the other hand, the addition of Mg and W alters the electrical conductivity, i.e., the electrical conductivity increases by a factor of up to 2.4 or decrease by a factor of up to 57.4 depending on the impurity type and its content. The thermal conductivity showed the values of 1.8~2.5 W/m·K below the transition temperature, and the values of 1.9~2.8 W/m·K above the transition temperature. These changes in electrical and thermal conductivities can be attributed to the combination of the change in charge carrier density, the impurities as scattering centers, and the change in microstructures.

Effect of Residual Chloride Ion on Thermal Decomposition Behaviour os Stannic Acid and Physical Properties of $SnO_2$ Powder Fabricated for Gas Sensor (가스센서용 $SnO_2$분말 제조시 잔류 염소이온이 Sn수화물의 열분해거동 및 분말물성에 미치는 영향)

  • Song, Guk-Hyeon;Choe, Byeong-U;Park, Jae-Hwan;Park, Sun-Ja
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.934-944
    • /
    • 1994
  • Effects of residual chloride on thermal decomposition behaviour of a-stannic acid and physical properties of $SnO_{2}$ powder were observed. The powder was fabricated by hydroxide method; $\alpha$-stannic acid was precipitated by mixing acqueous solutions of $SnCl_{4}$ and $NH_{4}$OH . The precipitate was washed with $NH_{4}NO_{3}$ solution while washing was controlled to be of three grades to modify its residual chloride content. The precipitate was dried at $1100^{\circ}C$ ~ 24h and calcined in air at $500^{\circ}C$ ~ $1100^{\circ}C$ for one hour. Thermal decomposition behaviour of $\alpha$-stannic acid was examined by a DT-TGA and a FTIR. Chemical composition and physical properties of $SnO_{2}$ powder were observed by an AES, a BET and a TEM, respectively. With a reduction in chloride content, the relative crystallite size of $SnO_{2}$ powder slightly increased by a low-temperature-calcining. However, at a high calcining temperature(T), the reverse relation occured. It was suggested that chloride ion replaces part of lattice oxygen site of a-stannic acid. Also, chloride ion on the site was suggested to retard de-hydration as well as crystalization at a low T while to promote crystal growth of $SnO_{2}$ by forming oxygen vacancy at a high T.

  • PDF