• Title/Summary/Keyword: 재료 물성감소

Search Result 410, Processing Time 0.026 seconds

Mechanical Properties Evaluation of 3D Printing Recycled Concrete utilizing Wasted Shell Aggregate (패각 잔골재를 활용한 3D 프린팅 자원순환 콘크리트의 역학적 성능 평가)

  • Jeewoo Suh;Ju-Hyeon Park;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The volume of shells, a prominent form of marine waste, is steadily increasing each year. However, a significant portion of these shells is either discarded or left near coastlines, posing environmental and social concerns. Utilizing shells as a substitute for traditional aggregates presents a potential solution, especially considering the diminishing availability of natural aggregates. This approach could effectively reduce transportation logistics costs, thereby promoting resource recycling. In this study, we explore the feasibility of employing wasted shell aggregates in 3D concrete printing technology for marine structures. Despite the advantages, it is observed that 3D printing concrete with wasted shells as aggregates results in lower strength compared to ordinary concrete, attributed to pores at the interface of shells and cement paste. Microstructure characterization becomes essential for evaluating mechanical properties. We conduct an analysis of the mechanical properties and microstructure of 3D printing concrete specimens incorporating wasted shells. Additionally, a mix design is proposed, taking into account flowability, extrudability, and buildability. To assess mechanical properties, compression and bonding strength specimens are fabricated using a 3D printer, and subsequent strength tests are conducted. Microstructure characteristics are analyzed through scanning electron microscope tests, providing high-resolution images. A histogram-based segmentation method is applied to segment pores, and porosity is compared based on the type of wasted shell. Pore characteristics are quantified using a probability function, establishing a correlation between the mechanical properties and microstructure characteristics of the specimens according to the type of wasted shell.

Physical and Mechanical Properties of Board Made from Carbonized Rice Husk (왕겨숯을 이용하여 제조한 보드의 물성)

  • Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2017
  • This study was investigated on the properties of board made from carbonized rice husk differed in density of board, resin addition ratio and sawdust addition ratio. Water absorption is showed the lowest value to 80.09% when the resin addition ratio of 25%, as the density increased and sawdust addition ratio decreased, the water absorption was decreased. The measured thickness swelling satisfied with the quality standards of KS F 3104, so the feasibility of building interior has been confirmed in the dimensional stability. In case of resin addition ratio of 25%, the internal bond strength was satisfied quality standards of KS F 3104 to $0.244N/mm^2$. With increasing the density, resin and sawdust addition ratio, brinell hardness increased.

Preparation and Mechnical Properties of Biodegradable Plastic Natural Fiber Composite (생분해성 플라스틱 천연Fiber 복합체의 물리적 특성)

  • Lee, Dong-Hyun;Kim, Sung-Tae;Kim, Dong-Gye;Kim, Sang-Gu;Park, Byung-Wok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.79-79
    • /
    • 2011
  • 최근 플라스틱 제품의 사용후 폐기에서 발생 되는 환경적인 문제점들이 대두 되고 있는 가운데, 이러한 제품에 대한 친환경적인 재료 설계에 대한 요구가 거세지고 있는 실정으로 플라스틱 업계의 사활이 걸릴 정도의 중요한 문제로 부각되고 있다. 본 연구에서는 이러한 플라스틱 제품의 치명적인 환경적인 문제점을 극복하고자, Matrix 물질이 되는 플라스틱에서 부터 친 환경적인 생분해성 수지를 사용하면서, 물성의 강화제로써 천연물 유래의 여러 종류의 섬유를 사용하고자 하였다.가장 보편화된 생분해성 플라스틱인 지방족 폴리에스테르 계통의 생분해성 수지와 Polylactic acid에 대해 검토를 하였다. 지방족 폴리에스테르 의 경우는 기존 플라스틱 제품과 비교해서 유연하고, 신장율이 높고, PLA 대비 내열 사용한계 온도도 높아서 물성적인 측면에서 상당한 장점을 가지고는 있으나 가격이 매우 고가이므로, 기존 플라스틱을 대체하는 것에는 문제점이 있다. 반면 PLA의 경우 지방족 폴리에스테르 대비 절반 이하의 가격이고 기계적 강도 또한 매우 높기 때문에 기존의 플라스틱을 대체할 수 있는 가장 유력한 물질로 대두 되고 있으나, 사출물과 같은 충격이 요구되는 제품에 있어서는 PLA 고유의 약한 취성이 가장 큰 단점으로 지적되고 있다. 본 연구에서는 이러한 PLA를 기반으로 PLA의 장점이 기계적 강성을 유지하면서, 취성을 보완하기 위해 PBS를 혼합 할 수 있는 기술을 개발하였으며, 또한 원재료의 Cost를 줄이고, PBS 혼합에 따른 PLA의 기계적 강도 감소를 보완하기 위해 천연물 유래의 Wood fiber, Starch, Bamboo fiber, Cellulose fiber, Paper fiber 와 같은 각종 천연 Filler를 사용하여 기계적 기계적 강도 감소를 최소화 하였다.

  • PDF

The Effect of Particle Size and Additives on the Thermoelectric Properties of P-type FeSi2 (P형 FeSi2의 열전물성에 미치는 입자크기 및 첨가물 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1883-1889
    • /
    • 2013
  • Although Fe-Si based alloy has lower figure of merit than Si-Ge alloy applied for space probe, its low cost related to abundant raw material, rather simple processing, high temperature resistance and reliability up to $800^{\circ}C$ made it one of the most promising middle temperature thermoelectric generation materials. The effect of particle size and additive on the thermoelectric properties of p-$FeSi_2$ prepared by a RF inductive furnace was investigated. The electrical conductivity increased slightly with decreasing particle size and hence better grain-to-grain connectivity due to the increase of density. The Seebeck coefficient exhibited the maximum value at about 600~800K and decreased slightly with increasing particle size. This must be due to the amount of residual metallic phase ${\varepsilon}$-FeSi. $Fe_2O_3$ and/or $Fe_3O_4$-doped specimens showed the higher electrical conductivity and the lower Seebeck coefficient due to increase of the metallic phase and Si-vacancy. On the other hand, $SiO_2$-doped specimen showed the higher electrical conductivity and the higher Seebeck coefficients.

Age-related Geometric Effects on the Human Lumbar Spine by the Finite Element Method (유한 요소법을 이용한 나이에 따른 척추의 형상 및 구조변화의 효과)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.285-293
    • /
    • 2000
  • Age-related changes in the geometry of human lumbar spine would lead to changes of its mechanical behaviors. To investigate the effects of the geometric changes, no age-related changes in the material/mechanical properties were considered. Using the finite element method. two age-related models of lumbar spine segments (L3-L4) were constructed. The annulus of the models was modeled as laminate composite elements with 16 layers and 6 materials. The spinal stiffness and facet reaction of the lumbar spine increased with the age-related geometric changes in various combined loadings. Fiber and transverse tensile strains of the inner annulus. cancellous bone stress and end-plate stress decreased with the age-related geometric changes whereas fiber/layer compressive strains of the annulus. facet reaction. ligament reaction and end-plate rigidity increased. Consequently, it appears that in the normal age-related deterioration of discs, the age-related geometric change contributes to the increase of spinal stiffness (the decrease in range of the motion segment), preventing an excessive deformation of the disc.

  • PDF

An Analysis on Characteristics of Thickness of Asphalt Concrete Pavement with Computer Programs (전산해석 프로그램을 이용한 아스팔트포장 단면의 거동특성분석)

  • Lee, Gyeong-Ha;Lee, Gwang-Ho
    • International Journal of Highway Engineering
    • /
    • v.1 no.2
    • /
    • pp.155-168
    • /
    • 1999
  • Asphalt pavement tends to rut in high temperature and to crack in cold temperature. The performance of asphalt pavement can be deteriorated by korean weather condition which has the four distinct seasons. In this study, the typical sections that may minimize rutting and fatigue were analyzed through the numerical model tests. The layered elastic theory , finite element method and visco elastic theory were utilized for these numerical model tests. From the various numerical model tests, it is found that an optimum design procedure was recommended. It was increasing the thickness of asphalt stabilized base with fixing the wearing course as 5cm the minimum specified thickness. The section was most beneficial in resting rutting and fatigue. From the analysis of the relative index on tensile strain and cost analysis, it was recommended that the thickness ratio of subbase and asphalt concrete is 1.0$\sim$2.5.

  • PDF

Physical Properties of Polymer Concrete Composite Using Rapid-Cooled Steel Slag (I) (Use of Rapid-Cooled Steel Slag in Replacement of Fine Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(I) (잔골재를 급냉 제강슬래그로 대체 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.210-216
    • /
    • 2012
  • For the recycling of rapid-cooled steel slag, various specimens were prepared with the various replacement ratios of the rapid-cooled steel slag and the addition ratios of polymer binders. The physical properties of these specimens were then investigated by absorption test, compressive strength test, flexural strength test and hot water resistance test, and the pore and the micro-structure analysis was performed using scanning electron microscope. Results showed that the flexural strength increased with the increase of rapid-cooled steel slag and polymer binder, but the compressive strength showed a maximum strength at a certain proportion. By the hot water resistance test, compressive strength and flexural strength decreased remarkably and the total pore volume increased but the pore diameter decreased. SEM observation of the structure before the hot water resistance test revealed a very compact infusion of structure but the decomposition or thermal degradation appeared in polymer binders when observed after the hot water resistance test.

Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion (이축 압출공정을 이용한 Wood Polymer Composite의 제조 및 특성 분석)

  • Lee, Jong-Hyeok;Lee, Byung-Gab;Park, Ki-Hun;Bang, Dae-Suk;Jhee, Kwang-Hwan;Sin, Min-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • Wood Polymer Composite (WPC) has attracted a great deal of attention in environmental industries due to renewable resources, processability, excellent physical properties and logging regulations for application to housing units and engineering construction materials. In this study, commercial WPCs were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as wood flour contents, coupling agent concentrations and pre-treatment of wood flour on the properties of WPCs was extensively investigated. It was found that tensile strength and thermal stability were decreased with increasing wood flour contents whereas the water absorption was increased. Addition of maleic anhydride grafted polypropylene (PP-g-MA) into WPC exhibited better physical properties. On the contrary, the water absorption was slightly decreased with PP-g-MA. Finally the sample, which was prepared with pre-treated wood flour, represented the highest tensile strength. However, the water absorption of the sample was increased due to the transition of crystalline structure of cellulose.

Evaluation on Tensile Characteristics of Extruded Aluminum Panel Joints by Friction Stir Welding Parameters (마찰교반 용접변수에 따른 알루미늄 압출판재의 인장특성 평가)

  • Lim, Byung-Chul;Kim, Young-Moon;Kim, Won-Seop;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.614-618
    • /
    • 2018
  • The changes in the mechanical properties according to the width of the tool shoulder, rotation speed and moving speed in friction stir welding (FSW) are evaluated using Al 6061-T6. The results indicated that the tensile strength value increases with increasing rotation speed. The higher the moving speed of the tool shoulder, the lower the tensile strength, regardless of the tool type. A higher tensile strength value was generally obtained with a tool shoulder diameter of 12mm (TSD12) than with 8mm. When the moving and rotation speeds exceed a limiting value, a stabilization stage is reached, in which (the tool shoulder diameter?) no longer affects the material properties. At a tool shoulder diameter of 8mm (TSD8), the material properties are decreased and the mixture of material in the welding area is incomplete in comparison with the tool type of TSD12. The tensile strength value is decreased at a rotation speed of 1500 rpm. As a result, a rotation speed higher than the threshold value is needed in order for and the transition temperature to be reached, which allows the complete mixing of the material in the welding area.

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.