• Title/Summary/Keyword: 재료평가지수

Search Result 204, Processing Time 0.029 seconds

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

A Study on Failure Strength of the Hybrid Composite Joint (복합재 하이브리드 조인트의 파손강도에 관한 연구)

  • Lee, Young-Hwan;Park, Jae-Hyun;Ahn, Jeoung-Hee;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.7-13
    • /
    • 2009
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure strengths of the hybrid composite joints which were composed of a combination of an adhesive joint and a mechanical joint were evaluated and predicted. The 10 hybrid joint specimens which have different w/d, e/d and adherend thickness were manufactured and tested. The damage zone theory and the failure area index method were used for the failure prediction of the adhesive joint and the mechanical joint, respectively and the hybrid joints were assumed to be failures if either of the two failure criteria was satisfied. From the results of experiments and analyses, the failure strengths of the hybrid joints could be predicted to within 25.5%.

Effect of Working Pressure on the Electrical and Optical Properties of ITZO Thin Films Deposited on PES Substrate with SiO2 Buffer Layer (공정압력이 SiO2 버퍼층을 갖는 PES 기판위에 증착한 ITZO 박막의 전기적 및 광학적 특성에 미치는 영향)

  • Joung, Yang-Hee;Choi, Byeong-Kyun;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.887-892
    • /
    • 2019
  • In this study, after 20nm-thick $SiO_2$ thin film was deposited by PECVD method on the PES substrate, which is known to have the highest heat resistance among plastic substrates, as a buffer layer, ITZO thin films were deposited by RF magnetron sputtering method to investigate the electrical and optical properties according to the working pressure. The ITZO thin film deposited at the working pressure of 3mTorr showed the best electrical properties with a resistivity of $8.02{\times}10^{-4}{\Omega}-cm$ and a sheet resistance of $50.13{\Omega}/sq.$. The average transmittance in the visible region (400-800nm) of all ITZO films was over 80% regardless of working pressure. The Figure of merit showed the largest value of $23.90{\times}10^{-4}{\Omega}^{-1}$ in the ITZO thin film deposited at 3mTorr. This study found that ITZO thin films are very promising materials to replace ITO thin films in next-generation flexible display devices.

Influence of the DC Power on the Electrical and Optical Properties of ITO Thin Films Deposited on Nb2O5/SiO2 Buffer Layer (Nb2O5/SiO2 버퍼층위에 증착한 ITO 박막의 전기적 및 광학적 특성에 DC 파워가 미치는 영향)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.297-302
    • /
    • 2019
  • In this study, we deposited ITO thin films on buffer layer of $Nb_2O_5(8nm)/SiO_2(45nm)$ using DC magnetron sputtering method and investigated its electrical and optical properties with various DC powers(100~400 W). The surface of the ITO thin film was observed by AFM. All thin films had defected free surface such as pinholes and cracks. The thin film deposited at DC power of 200 W exhibited the smallest surface roughness of 1.431nm. As a result of electrical and optical measurements, the ITO thin film deposited at DC power of 200 W which showed the lowest resistivity of $3.03{\times}10^{-4}{\Omega}-cm$. The average transmittance in the visible light region(400 to 800 nm) and the transmittance at the wavelength of 550nm were found to be 85.8% and 87.1%, respectively. The chromaticity(b*) was also a relatively good value as 2.13. The figure of merit obtained from the sheet resistance of the ITO thin film, the average transmittance in the visible light region and the transmittance at the wavelength of 550nm were the best values of $2.50{\times}10^{-3}{\Omega}^{-1}$ and $2.90{\times}10^{-3}{\Omega}^{-1}$ at a DC power of 200W, respectively.

A Study on Life-Cycle Environmental Impact of Synthetic Resin Formwork (합성수지 거푸집의 전과정 환경영향평가에 관한 연구)

  • Nam, Kyung-Yong;Yang, Keun-Hyeok;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • Synthetic resin formwork is made of lightweight high-density polyethylene(HDPE). This study used a process flow chart that satisfies the system boundary (such as Cradle-to- Product shipmen ) required by ISO FDIS 13352 to evaluate the entire process of synthetic resin foam using. The entire life cycle inventory (LCI) database calculated from input energy sources, materials used, transportation methods, and manufacturing processes at the system boundary was analyzed. Based on the environmental impact assessment index methodology of the Ministry of Environment from the LCI data analysis of synthetic resin formwork, the environmental impact assessment was carried out through classification, normalization, characterization, and weighting process. The experimental results are as follows the amount of CO2 (carbon) emission considering the number of conversions was about 32% lower than that of the Euroform. This shows that the use of synthetic resin formwork reduces material production by half compared to Euroform and reduces CO2 (carbon) emissions.

An experimental study on the cytotoxicity of orthodontic wires (교정용 호선의 세포독성에 관한 실험적 연구)

  • Lim, Yong-Kyu;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.26 no.5 s.58
    • /
    • pp.591-599
    • /
    • 1996
  • This study was undertaken to investigate the cytotoxicity of orthodontic wires after doing various treatments to the wires. 018x025 inch Stainless steel(A) and Co-Cr(B) wires were used and each of them were divided into 4 groups. A-1 and B-1 groups were as received state, and A-2 and B-2 groups were heat treated. A-3 and B-3 groups were electropolished after heat treatment, and A-4 and B-4 groups were soldered with Ag-solder. Each group had 3 wires and these were sterilized with Ethylene Oxide gas. We used human gingival fibroblast cell culture and agar overlay technique to investigate the cytotoxicity of each group of wires. The cytotoxicity of wire was assessed using reaction index (zone index/lysis index). The findings of this study were as follows. 1. Both of the stainless steel wire and Co-Cr wire showed no cytotoxicity in as received state. 2. Heat treatment or electropolishing of the wires had no effect on the cytotoxicity of the wires 3. Soldered stainless steel wires showed a little wider zone of discoloration than soldered Co-Cr wires, but the zone index and cytotoxicity(reaction index) was not different. 4. Soldered wires showed moderate cytotoxicity in both of the wires.

  • PDF

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Maximum Loads (최대하중 조건에 따른 AZ31 마그네슘합금의 실험적 피로균열전파모델 평가)

  • Choi, Seon-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.522-528
    • /
    • 2012
  • It is the aim of this paper to propose the empirical fatigue crack propagation model fit to describe a crack growth behavior of AZ31 magnesium alloys. The statistical data of a crack growth for an estimation are obtained by fatigue crack propagation tests under the three cases of maximum load. The empirical models estimated are Paris-Erdogan model, Walker model, Forman model, and modified-Forman model. It is found that the empirical model fit to describe a crack growth behavior of AZ31 magnesium alloys is Paris-Erdogan model and Walker model. It is also verified that a fatigue crack growth rate exponent of a empirical model is to be a material constant.

Design of Supplementary Cementitious Materials and Unit Content of Binder for Reducing CO2 Emission of Concrete (콘크리트 CO2 저감을 고려한 혼화재 및 단위 결합재 양의 설계)

  • Yang, Keun-Hyeok;Moon, Jae-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.597-604
    • /
    • 2012
  • The present study assessed the $CO_2$ emissions of concrete according to the type and replacement ratio of supplementary cementitious materials (SCM) and concrete compressive strength using a comprehensive database including 2464 cement concrete specimens and 776 cement concrete mixes with different SCMs. The system studied in $CO_2$ assessment of concrete based on Korean lifecycle inventory was from cradle to pre-construction, which includes consistent materials, transportation and production phases. As the performance efficiency indicators, binder and $CO_2$ intensities were analyzed, and simple equations to evaluate the amount of $CO_2$ emission of concrete were then formulated as a function of concrete compressive strength and the replacement ratio of each SCM. Hence, the proposed equations are expected to be practical and useful as a guideline to determine the type and replacement ratio of SCM and unit content of binder in concrete mix design that can satisfy the target compressive strength and $CO_2$ reduction percentage relative to cement concrete.

Safety Evaluation of Carbon Fiber/Epoxy Composite Link Using Micromechanics of Failure Criterion (미시역학적 파손 기준을 이용한 탄소섬유/에폭시 복합재 링크의 안전성 평가)

  • Jae Ho Cha;Sung Ho Yoon
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.154-161
    • /
    • 2023
  • This study explored the feasibility of replacing a metal link with a carbon fiber/epoxy composite link and assessed its capacity to withstand a given load condition using failure criteria. The micromechanics of failure (MMF) criterion was employed to predict the failure mode of the composite material, and mechanical tests were conducted to obtain reference strength parameters for MMF. The findings revealed that the stress distribution was concentrated near the hole, and weaknesses were found around the hole and at the end of the link under bending conditions. Based on the failure index, matrix tensile failure was predicted at the end of the link, and fiber compression failure occurred near the hole. The methods and results obtained from this study can provide valuable guidelines for assessing the safety of composite materials under specific load conditions when replacing metal parts with carbon fiber/epoxy composites to achieve weight reduction.