• Title/Summary/Keyword: 재료물성도

Search Result 2,457, Processing Time 0.034 seconds

Properties estimation of acoustical material (음향재료의 물리적 성질 추정)

  • Kim Yoon Jae;Kang Yeon June
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.195-198
    • /
    • 2004
  • 음향재료의 성능을 예측하기 위해서는 음향재료의 여러 물성들을 알아야 한다. 그러나 음향재료의 물성들을 측정하는 것은 매우 시간이 오래 걸리며, 복잡한 작업이다. 실제로 비틀림률이나 특성길이들은 정확하게 측정하기가 상당히 까다롭고 어렵다. 음향재료 각각의 물성들이 흠음률과 표면임피던스에 미치는 영향을 파악하고 임피던스 튜브에서 측정한 수직입사 흠음률을 이용하여 물성들을 추정하였다. 추정된 물성과 실험을 통하여 얻어진 음향재료의 물성을 비교하고, 추정된 물성들을 토대로 음향학적으로 모델링된 이론식으로 예측된 흡음률과 임피던스 튜브를 이용하여 측정한 흠음률을 비교하여 타당성을 검토하였다.

  • PDF

Inverse Estimation Method for Spatial Randomness of Material Properties and Its Application to Topology Optimization on Shape of Geotechnical Structures (재료 물성치의 공간적 임의성에 대한 역추정 방법 및 지반구조 형상의 위상 최적화 적용)

  • Kim, Dae-Young;Song, Myung Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • In this paper, the spatial randomness and probability characteristics of material properties are inversely estimated by using a set of the stochastic fields for the material properties of geotechnical structures. By using the probability distribution and probability characteristics of these estimated material properties, topology optimization is performed on structure shape, and the results are compared with the existing deterministic topology optimization results. A set of stochastic fields for material properties is generated, and the spatial randomness of material properties in each field is simulated. The probability distribution and probability characteristics of actual material properties are estimated using the partial values of material properties in each stochastic field. The probability characteristics of the estimated actual material properties are compared with those of the stochastic field set. Also, response variability of the ground structure having a modulus of elasticity with randomness is compared with response variability of the ground structure having a modulus of elasticity without randomness. Therefore, the quantified stochastic topology optimization result can be obtained with considering the spatial randomness of actual material properties.

Electronic properties of organic materials and it's applications (유기재료의 전자물성과 그의 응용)

  • 박대희;박춘배
    • Electrical & Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.200-206
    • /
    • 1993
  • 유기재료의 Electronic에 관련하는 물성과 구조와의 관계를 전자의 공역계분자와 vander waals상호작용과 Coulomb상호작용과의 조합에 의해서 설명하여 왔다. 앞에서 기술한 바와 같이 Electronic에 관련한 유기재료의 응용은 점점 넓어 지고 있는 추세에 있다. 따라서 이를 위한 유기재료의 전자물성의 평가 및 유기재료의 합성에 관한 많은 연구가 요구된다. 또한 유기재료의 미시적인 연구를 통하여 분자 Level의 기능소자도 가능할 것으로 기대되고 고차구조의 제어에 의한 전자물성의 향상 및 기능의 도출을 통한 그의 응용이 더욱 넓어질 것으로 보인다.

  • PDF

첨단 분석 장비를 활용한 철강재료 연구

  • Han, Heung-Nam;O, Gyu-Hwan;An, Tae-Hong
    • 기계와재료
    • /
    • v.22 no.2
    • /
    • pp.60-69
    • /
    • 2010
  • 고분해능의 첨단 재료분석 장비들의 발달로 인해 철강재료 연구에서도 마이크로, 나노 단위 이하에서의 재료거동 해석 등 새로운 개념의 연구가 진행되고 있다. 특히 전자현미경과 연계한 이미지 기반 나노 물성 측정과 예측 기술은 주로 구조용 재료로 사용되는 철강 재료에서도 결정립 단위의 미세 물성 및 거동을 정밀 분석 가능하게 하여, 이를 통해 재료 전체의 물성까지도 예측할 수 있게 되었다. 이와 같은 물성과 신뢰성 예측 능력 향상은 최종 제품의 품질 제고와 효율적인 제조 공정으로의 개선을 유도하기에, 첨단 분석 장비의 적극적인 활용은 철강 산업에서 큰 역할을 하고 있다. 이에 본 고에서는 여러 가지 재료 분석 장비를 통합적으로 연계 활용하여 다양한 용도의 철강 재료에 대해 그 미세 거동 및 미세물성을 측정, 분석한 연구들에 대해 소개한다.

  • PDF

Effects of salt water environment on the mechanical behavior of composites (복합재료의 기계적 거동에 염수환경이 미치는 영향에 관한 연구)

  • Moon, Jin-Bum;Kim, Soo-Hyun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • In this paper, two different experiments, namely, salt water spray and salt water immersion, were performed to reproduce the contact of composites with the seawater for three kinds of woven fabric composite material systems which would be used for the WIG(wing in ground effect)craft. After aging 140 days in the salt water environment, material properties of carbon/epoxy and glass/epoxy composite such as tensile, compressive and shear stiffness and strength, and inter-laminar shear strength (ILSS) were measured. By comparing baseline material properties with degraded ones, the effects of the salt water environment on the composite mechanical properties were evaluated. From the experiments, it was confirmed that the difference in aging conditions had very small influence on composite properties. And it was found that tensile strength of carbon/epoxy composites showed little degradation, but much more degradation was observed in glass/epoxy composites. And large degradations on matrix dominant properties were observed. The salt water could damage the fiber-matrix interface, matrix properties and the glass fiber.

Simulation-Based Material Property Analysis of 3D Woven Materials Using Artificial Neural Network (시뮬레이션 기반 3차원 엮임 재료의 물성치 분석 및 인공 신경망 해석)

  • Byungmo Kim;Seung-Hyun Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.259-264
    • /
    • 2023
  • In this study, we devised a parametric analysis workflow for efficiently analyzing the material properties of 3D woven materials. The parametric model uses wire spacing in the woven materials as a design parameter; we generated 2,500 numerical models with various combinations of these design parameters. Using MATLAB and ANSYS software, we obtained various material properties, such as bulk modulus, thermal conductivity, and fluid permeability of the woven materials, through a parametric batch analysis. We then used this large dataset of material properties to perform a regression analysis to validate the relationship between design variables and material properties, as well as the accuracy of numerical analysis. Furthermore, we constructed an artificial neural network capable of predicting the material properties of 3D woven materials on the basis of the obtained material database. The trained network can accurately estimate the material properties of the woven materials with arbitrary design parameters, without the need for numerical analyses.

Matrix Resin Systems with Different Molar Ratios to Improve the Properties of Fiber-reinforced Composites (섬유강화 복합재료의 물성향상을 위한 몰비가 다른 매트릭스 수지에 관한 연구)

  • 이상효;이장우
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.459-468
    • /
    • 2000
  • To improve the mechanical properties of fiber-reinforced polymer matrix composites, laminated composites plates were fabricated using different matrix resins and glass or aramid fibers. The effect of matrix resin system were evaluated by tensile, flexural strength measurements. In the case of surface treated aramid fiber and unsaturated polyester resin composite, maximum flexural properties were observed in the composite prepared from the glass fiber treated with 0.5 wt% silane coupling agents. Vinylester resin composites show the highest tensile properties and isophthalic polyester composites have the highest flexural properties among the unsaturated polyester resin composites studied. The relationship between overlap laminated composites plates and mechanical properties of polymer composites is also investigated in order to improve mechanical properties of glass fiber and unsaturated polyester resin composites.

  • PDF

Test Method on Interlaminar Tensile Properties of Carbon Fabric Reinforced Phenolic Composites (카본-페놀 직물복합재료의 층간인장물성 측정기법)

  • Lee Ji-Hyung;Kim Hyoung-Geun;Lee Hyung-Sik;Park Young-Che;Ju Se-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.81-85
    • /
    • 2006
  • Through-the-thickness properties of thick-walled cylindrical composites are required to determine structural performances because interlaminar tensile stress is primarily responsible for structural failure of the composites during their curing process. It is necessary for evaluating the tensile properties to find individual test methods to find appropriate methods because there are no recognised international standards(test methods and test specifications) available for generating reliable tensile properties in the direction. This paper has performed an experimental Study to measure that properties of carbon fabric/phenolic composites are produced by domestic company. Several test methods using an aluminum specimen were compared and evaluated. The best method, found out, was adopted to measure transverse through-the-thickness properties of composite materials. The results show that strain trends on four faces of composite specimen are the same.

  • PDF

Test Method on Interlaminar Tensile Properties of Carbon fabric Reinforced Phenolic Composites (카본-페놀 직물복합재료의 층간인장물성 측정기법)

  • Lee, Ji-Hyung;Kim, Hyoung-Geun;Lee, Hyung-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.48-52
    • /
    • 2006
  • Through-the-thickness properties of thick-walled cylindrical composites are required to determine structural performances because interlaminar tensile stress is primarily responsible for structural failure of the composites during their curing process. It is necessary for evaluating the tensile properties to find individual test methods to find appropriate methods because there are no recognised international standards(test methods and test specifications) available for generating reliable tensile properties in the direction. This paper has performed an experimental study to measure that properties of carbon fabric/phenolic composites which are produced by domestic company. Several test methods using an aluminum specimen were compared and evaluated. The best test method to measure transverse through-the-thickness properties of composite materials was developed by the experimental results that strain trends on all faces of composite specimen are the same.

Synthesis of Alumina-Silica ceramic material(II) (알루미나-실리카계 세라믹복합체 제조 연구(II))

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.48-53
    • /
    • 2005
  • In this study, to improve the ballistic efficiency of very brilliant alumina-silica armor material, forming press and sintering temperature were changed. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles and analyzed them. As a result, in $1235^{\circ}C$, it appeared the highest ballistic efficiency about HEAT and it improved $22\%$ ballistic efficiency, better than invented alumina-silica armor material before.