• Title/Summary/Keyword: 장화리

Search Result 12, Processing Time 0.019 seconds

Protective Effect of Pesticide on Radiation-Induced Cell Damage in Tradescantia 4430 Stamen Hairs (자주달개비 수술털에서 방사선에 의해 유발되는 세포손상에 대한 살충제의 방어효과)

  • 김진규;김원록;이창주;장화형;이영근
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 1999
  • To investigate the combined effect of radiation and pesticide on Tradescantia somatic cell mutations, potted plants of Tradescantia 4430 on which parathion had been sprayed evenly 24 hours before irradiation. Radiation doses were 0.3, 0.5, 1.0 and 2.0 Gy of gamma-ray. The plants irradiated only with the gamma-ray radiation were used as control groups (CT). Pink mutation frequency increased linearly proportional to the radiation dose and the peak interval of elevated mutation frequencies appeared during 7 ~ 11 days after irradiation in both CT and Pa +${\gamma}$ groups. The slope of dose -response curve in CT was 5.99 ($r^2$= 0.988), while it was 3.43 (r$x^-2$=0.981) in Pa+${\gamma}$. It seemed that parathion pretreatment had a protective effect against radiation-induced cell damages since it decreased the slope value by 43%. It is suggested that an adaptive response or radiomodification could be induced in irradiated stamen hair cells by parathion pretreatment.

  • PDF

Temporal Variation in the Distributions of the Benthic Heterotrophic Protozoa and Their Grazing Impacts on Benthic Bacteria and Microalgae in the Ganghwa Tidal Flat, Korea (강화도 펄 갯벌에서 저서성 원생동물 분포의 시간적 변이와 박테리아 및 미세 조류에 대한 포식압)

  • Yang, Eun-Jin;Choi, Joong-Ki;Yoo, Man-Ho;Cho, Byung-Cheol;Choi, Dong-Man
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • To investigate the seasonal distribution and grazing impacts of benthic protozoa in mud flat, their abundance, biomass and grazing rates of benthic protozoa were evaluated at interval of two or three month in Gangwha Island from April, 2002 to April, 2004. Heterotrophic flagellates and ciliates accounted for an average 98% of benthic protozoa biomass. Abundance and carbon biomass of heterotrophic flagellates ranged from $0.2{\times}10^5$ to $5.9{\times}10^5\;cells\;cm{-3}$ and from 0.02 to $9.2\;{\mu}gC\;cm^{-3}$, respectively. Biomass of heterotrophic flagellates was high in spring and fall, and showed no differences among stations. Abundance and biomass of heterotrophic flagellates decreased with the depth and were high within the surface 2.5 m sediment layer. The majority of heterotrophic flagellates were less than $10\;{\mu}m$ in length, and few euglenoid flagellates were larger than $20\;{\mu}m$. Abundance and carbon biomass of ciliates ranged from $0.1{\times}10^3$ to $17.8{\times}10^3\;cells\;cm^{-3}$ and from 0.02 to $9.1\;{\mu}gC\;cm^{-3}$, respectively, and those of ciliates were high in spring and fall. Biomass of ciliates was high within the surface 2.5 mm sediment layer and was higher at st. J2 and st. J3 than st. J1. Among the revealed benthic ciliates, the hypotrichs were the most important group in terms of abundance and biomass. During the sampling periods, an average 66% of benthic protozoa biomass was covered by ciliates. The seasonal distribution of benthic protozoa showed an almost similar fluctuation pattern to that of chlorophyll-a. The results suggest that the biomass of benthic protozoa were mainly controlled by prey abundance, for example, diatoms. Based on ingestion rates, benthic protozoa removed from 13.4 to 40.7% of bacterial production and from 20.1 to 36.4% of primary production. Ingestion rates of benthic protozoa on bacteria and microphytobenthos were high in April. Benthic protozoa in this study area may play a pivotal role in the carbon flow of the benthic microbial food web during spring.