• 제목/요약/키워드: 장약량

검색결과 105건 처리시간 0.02초

터널에서 대구경 무장약공과 선균열을 이용한 심빼기 공법에 관한 연구 (The Circular Center Cut with Large Empty Hole & Pre-Splitting in Tunnel Blasting)

  • 김재홍;임한욱
    • 터널과지하공간
    • /
    • 제11권3호
    • /
    • pp.248-256
    • /
    • 2001
  • 실린더 컷은 터널 굴착단면의 크기에 관계없이 널리 이용된다. 본 연구에서는 발파당 굴진장을 중대시키기 위하여 종래의 방법과 다른 새로운 방법을 제안하였다. 이 방법의 새로운 패턴은 그림과 같으며, 각 단계별로 상세한 저항선, 공간간격은 별도 그림과 같다. 새로운 실린더 컷 방법과 종래의 방법과의 결과는 다음과 같다. 종래 방법은 굴진장이 천공장의 90∼95%인데 비하여 새로운 방법은 대체로 99.5%이다. 비장약량이 1.363kg/㎥에서 1.297로 약 5% 감소되며, 비천공장이 2.393 m/㎥에서 2.130으로 약 8%o감소 된다. 그밖에 지반진동, 비산, 파쇄암의 크기 등이 종래 방법에 비하여 우수함을 확인하였다.

  • PDF

강건설계법을 이용한 스웨덴식 벤치발파의 설계 인자 분석 (Parameter Analysis of Swedish Bench Blast Design using Robust Design Method)

  • 양형식
    • 화약ㆍ발파
    • /
    • 제31권2호
    • /
    • pp.1-5
    • /
    • 2013
  • 스웨덴 식 벤치발파 설계방식에 대하여 실험계획법을 이용하여 설계인자를 분석하였다. 분석에 사용된 직교배열은 $L_9(3^4)$이었고 변수는 각각 3수준의 값을 갖는 천공직경, 화약의 종류, 공의 경사와 암석의 종류로 하였다. 분석결과 저항선 결정 영향요소는 천공직경, 화약의 종류, 암석의 종류 그리고 공의 경사 순이었으며 비장약량 영향요소는 암석의 종류, 화약의 종류 그리고 비천공장에 영향을 미치는 요소는 천공직경과 화약의 종류순이었다. 또 강건설계를 이용한 경제성 검토에서 최적인자 선택이 가능함을 확인하였다.

암석파괴효율(岩石發破效率)에 관한 연구(硏究) (Study on the Effect of Rock Blasting)

  • 김웅수;이근배
    • 자원환경지질
    • /
    • 제13권1호
    • /
    • pp.29-50
    • /
    • 1980
  • 1. 현장발파(現場發破)에 있어서 오늘날 충분(充分)히 실용(實用)할 수 있는 발파이론(發破理論)이 확립(確立)되어 있지 않다고 본다. 그 이유(理由)는 종래(從來) 사용해오던 Hauoser의 공식(公式)이 실용발파(實用發破)에 전(全)혀 도움을 주지 못하기 때문이다. 즉(卽), i) 장약량수정(裝藥量修正)에 관(關)한 누두함수(漏斗函數) f(n) 발파규모수정항(發破規模修正項) f(W)와의 혼용(混用) ii) 암석항력계수(岩石抗力係數) g와 단위체적당폭약소비량(單位體積當爆藥消費量) $(kg/m^3)$과의 오용(誤用) iii) 폭파계수(爆破係數) C가 egd인가, f(W) egd인가의 부명확성(不明確性) 등이다. 본연구에서의 이와 같은 제문제점(諸問題點)을 명확(明確)히 하고 2. 제발발파이론(齊發發破理論)을 확대적용(擴大適用)하여 bench 발파(發破), smooth blasting 및 소할발파(小割發破)에 있어서는 장약량공식(裝藥量公式)을 유도(誘導)할 수 있음을 증명(證明)하고 3. 갱도굴착단면계수(坑道掘鑿斷面係數) 및 발파규모(發破規模)에 의하여 수정(修正)한 단위체적당장약량(單位體積當裝藥量)$(kg/m^3)$을 구(求)하고 총장약량(總裝藥量)을 산출(算出)하여 발파설계(發破設計)를 할 수 있는 방법(方法)의 예(例)를 들어 보였다.

  • PDF

신설 터널 발파 시 기존 터널 거동 및 시설물 안전에 관한 연구 (A Study on the Behavior of an Existing Tunnel and the Safety Implications on its Facilities from a New Tunnel Blasting)

  • 김성훈;조원철
    • 한국재난관리표준학회지
    • /
    • 제3권2호
    • /
    • pp.57-64
    • /
    • 2010
  • 본 연구는 신설 터널 발파 시 기존 터널 거동 및 시설물 안전에 관한 연구로서 설계 당시에는 신설 터널의 안전성에 초점을 맞추다 보니 기존 터널 내부에 설치되어 있는 제연 팬 등과 같이 시설물의 안전성을 확보하기 위한 세부적인 설계에 있어서 다소 미흡한 면이 있었다. 기존 터널의 최근 10년간 교통사고 유형을 분석한 결과 주행 중인 차량 간 긴급 상황 및 상호 장애요소 발생 시 미처 대처하지 못해 발생하는 사고가 대부분인 것을 알 수 있었다. 이런 점을 감안하여 신설 터널 시점 부 및 본선 구간 발파 시 장약량을 최소화하였고 피난연결통로 굴착은 대구경 심빼기 발파공법으로 변경 시공하여 진동을 최소화함으로써 기존 터널 내부의 시설물 안전성을 확보하였다. 정량적 분석 방법으로서는 각종 계측기를 설치하여 신설 터널 주변 민가, 기존 터널 내부 및 제연 팬 주위에 설치하여 실시간 변위를 파악하여 교통류 차단 없이 정상 흐름을 확보하였다. 향후 대도심지에 위치하면서 기존 터널과 인접한 터널 설계 시 터널 내부 시설물 안전성 확보를 위해 발파 장약량, 발파공법 및 계측방법의 개선 방안을 제시하였다.

  • PDF

발파공내 기폭위치가 지반진동에 미치는 영향 (Influence of Inner-hole Priming Location on Ground Vibration)

  • 김재웅;강추원;고진석
    • 화약ㆍ발파
    • /
    • 제30권1호
    • /
    • pp.29-36
    • /
    • 2012
  • 기폭위치가 지반진동에 미치는 영향에 대한 연구들을 살펴보면 발파진동의 복합적인 원인에 반하여 단편적인 연구로 진행되거나 적용범위가 연구가 이루어진 해당 현장만으로 국한적으로 나타나며 발파설계 인자로서 이용되는 데 한계를 보였다. 이에 본 연구는 기폭위치에 따라 발파진동의 전파 특성을 파악하기 위해서 공간격, 저항선, 천공장 그리고 장약량 등을 달리하여 총 72회의 단일공 시험발파를 실시하여 발파진동 예측식을 도출하였다. 도출된 발파진동 예측식으로부터 기폭위치에 따른 최대입자속도의 노모그램 분석을 통해 진동특성을 규명하였다. 또한, 국토해양부의 "도로공사 노천발파 설계 시공 지침"에 제시된 표준발파공법의 공법별 경계 기준 장약량인 0.5, 1.6, 5, 15kg을 적용하여 기폭위치별 진동 감쇄경향을 비교 분석하여 발파설계의 인자로 사용할 수 있도록 제안하였다.

터널굴진에서 장약 및 기폭방법 개선에 관한 연구 (A Study on the Improvement of a Charging and Initiating Method in a Tunnel Excavation)

  • 오이환;원연호;임한욱
    • 화약ㆍ발파
    • /
    • 제24권2호
    • /
    • pp.1-8
    • /
    • 2006
  • 본 연구는 규석광의 터널 굴착시 굴진장 향상과 사압현상 및 소결현상을 예방하기 위해 모든 장약공의 장약밀도를 다르게 적용하였다. 이 때 심발공은 동일 장약공내에 2개의 뇌관을 이용한 정기폭과 역기폭의 복합기폭방식을 도입하였다. 자유면 형성이 어려운 공저부분은 높은 장약밀도로 장전하고, 주상부분은 공저보다 낮은 장약밀도로 장전함으로써 폭약의 위력이 효과적으로 암반에 대응할 수 있는 공법인 복합장약기폭시스템을 개발하였다. 그 결과 경암이나 장공발파에서 흔히 발생되는 사압현상 및 소결현상 등을 방지할 수 있었다. 또한 1회 천공장 대비 굴진장을 95% 이상 증대시킴으로써 약 15% 정도의 시공능율이 향상되고 비장약량이 20% 정도 감소되었다.

수중발파 사례 연구 (A Case Study of Underwater Blasting)

  • 정민수;박종호;송영석
    • 화약ㆍ발파
    • /
    • 제22권3호
    • /
    • pp.57-64
    • /
    • 2004
  • 국내에서 적용되는 수중발파는 교량의 기초를 위한 수중 우물통 발파와 항만의 수로 증심 또는 준설을 위하여 적용되고 있다 그 중 교각의 기초를 위한 우물통 발파는 우물통내 물을 인위적으로 배수시켜 건조한 상태에서의 천공과 장약을 실시한 후 물을 다시 채운 후 수중에서의 발파를 수행하고 있어 전체적인 작업이 일반 노천발파와 동일하다 할 수 있다. 그러나 항만의 수로 증심과 준설을 위한 수중 발파는 수중 천공이 가능하도록 고안된 바지선을 이용하여 수중에서 천공과 장약 발파 작업이 이루어지는 특수성을 가지고 있다. 따라서 일반 터널이나 벤치발파와는 다르게 장약의 방법과 결선의 방법에 주의를 기울이지 않으면 수압에 의한 사압 등 어려운 조건하에서 불발이 야기될 수 있다. 본 사례연구는 국내 부산항 증심 준설공사에서 수중발파의 특수성을 고려하여 다이너마이트 (메가마이트 I)를 이용한 수중 발파의 장약량 선정과 파이프를 이용한 장약의 방법, 그리고 TLD를 이용한 기폭시스템이 수면위에서 기폭 될 수 있도록 부이를 이용한 결선방법을 적용하여 수중발파를 실시하고 사례별 결과를 비교하였다. 그 결과, 수중발파 장약량 설계에 따른 지발당장약량에 따른 진동의 예측과 실 계측을 통하여 예측 진동식의 타당성을 검증하였으며, 장약의 방법과 결선방법에 따라 발생될 수 있는 불발을 최소화시킬 수 있을 것이다. 따라서, 최적발파 효과와 안전한 발파를 수행하기 위하여, 천공경은 150mm이상, 화약은 고성능 수중 다이너마이트(메가마이트 II), 그리고 뇌관은 비전기뇌관을 적용하는 것이 가장 유리할 것으로 판단된다.

노천굴착에서 발파진동의 크기를 감량 시키기 위한 정밀파실험식 (On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works.)

  • 허진
    • 화약ㆍ발파
    • /
    • 제9권1호
    • /
    • pp.3-13
    • /
    • 1991
  • 발파에 의한 지반진동의 크기는 화약류의 종류에 따른 화약의 특성, 장약량, 기폭방법, 전새의 상태와 화약의 장전밀도, 자유면의 수, 폭원과 측간의 거리 및 지질조건 등에 따라 다르지만 지질 및 발파조건이 동일한 경우 특히 측점으로부터 발파지점 까지의 거리와 지발당 최대장약량 (W)간에 깊은 함수관계가 있음이 밝혀졌다. 즉 발파진동식은 $V=K{\cdot}(\frac{D}{W^b})^n{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (1) 여기서 V ; 진동속도, cm /sec D ; 폭원으로부터의 거리, m W ; 지발 장약량, kg K ; 발파진동 상수 b ; 장약지수 R ; 감쇠지수 이 발파진동식에서 b=1/2인 경우 즉 $D{\;}/{\;}\sqrt{W}$를 자승근 환산거리(Root scaled distance), $b=\frac{1}{3}$인 경우 즉 $D{\;}/{\;}\sqrt[3]{W}$를 입방근환산거리(Cube root scaled distance)라 한다. 이 장약 및 감쇠지수와 발파진동 상수를 구하기 위하여 임의거리와 장약량에 대한 진동치를 측정, 중회귀분석(Multiple regressional analysis)에 의해 일반식을 유도하고 Root scaling과 Cube root scaling에 대한 회귀선(regression line)을 구하여 회귀선에 대한 적합도가 높은 쪽을 택하여 비교, 검토하였다. 위 (1)식의 양변에 log를 취하여 linear form(직선형)으로 바꾸어 쓰면 (2)式과 같다. log V=A+BlogD+ClogW ----- (2) 여기서, A=log K B=-n C=bn (2)식은 다시 (3)식으로 표시할 수 있다. $Yi=A+BXi_{1}+CXi_{2}+{\varepsilon}i{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$(3) 여기서, $Xi_{1},{\;}Xi_{2} ;(두 독립변수 logD, logW의 i번째 측정치. Yi ; ($Xi_1,{\;}Xi_2$)에 대한 logV의 측정치 ${\varepsilon}i$ ; error term 이다. (3)식에서 n개의 자료를 (2)식의 회귀평면으로 대표시키기 위해서는 $S={\sum}^n_{i=1}\{Yi-(A+BXi_{1}+CXi_{2})\}\^2$을 최소로하는 A, B, C 값을 구하면 된다. 이 방법을 최소자승법이 라 하며 S를 최소로 하는 A, B, C의 값은 (4)식으로 표시한다. $\frac{{\partial}S}{{\partial}A}=0,{\;}\frac{{\partial}S}{{\partial}B}=0,{\;}\frac{{\partial}S}{{\partial}C}=0{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (4) 위식을 Matrix form으로 간단히 나타내면 식(5)와 같다. [equation omitted] (5) 자료가 많아 계산과정이 복잡해져서 본실험의 정자료들은 전산기를 사용하여 처리하였다. root scaling과 Cube root scaling의 경우 각각 $logV=A+B(logD-\frac{1}{2}W){\;}logV=A+B(logD-\frac{1}{3}W){\;}\}{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (6) 으로 (2)식의 특별한 형태이며 log-log 좌표에서 직선으로 표시되고 이때 A는 절편, B는 기울기를 나타낸다. $\bullet$ 측정치의 검토 본 자료의 특성을 비교, 검토하기 위하여 지금까지 발표된 국내의 몇몇 자료를 보면 다음과 같다. 물론, 장약량, 폭원으로 부터의 거리등이 상이하지만 대체적인 경향성을 추정하는데 참고할수 있을 것이다. 금반 총실측자료는 총 88개이지만 환산거리(5.D)와 진동속도의 크기와의 관계에서 차이를 보이고 있어 편선상 폭원과 측점지점간의 거리에 따라 l00m말만인 A지역과 l00m이상인B지역으로 구분하였다. 한편 A지역의 자료 56개중, 상하로 편차가 큰 19개를 제외한 37개자료와 B지역의 29개중 2개를 낙외한 27개(88개 자료중 거리표시가 안된 12월 1일의 자료3개는 원래부터 제외)의 자료를 computer로 처리하여 얻은 발파진동식은 다음과 같다. $V=41(D{\;}/{\;}\sqrt[3]{W})^{-1.41}{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (7) (-100m)(R=0.69) $V=124(D{\;}/{\;}\sqrt[3]{W})^{-1.66){\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (8) (+100m)(R=0.782) 식(7) 및 (8)에서 R은 구한 직선식의 적합도를 나타내는 상관계수로 R=1인때는 모든 측정자료가 하나의 직선상에 표시됨을 의미하며 그 값이 낮을수록 자료가 분산됨을 뜻한다. 본 보고에서는 상관계수가 자승근거리때 보다는 입방근일때가 더 높기 때문에 발파진동식을 입방근($D{\;}/{\;}\sqrt[3]{W}$)으로 표시하였다. 특히 A지역에서는 R=0.69인데 비하여 폭원과 측점지점간의 거리가 l00m 이상으로 A지역보다 멀리 떨어진 B지역에서는 R=0.782로 비교적 높은 값을 보이는 것은 진동성분중 고주파성분의 상당량이 감쇠를 당하기 때문으로 생각된다.

  • PDF

터널발파에서 일반발파와 AIR-TUBES발파의 비교연구 (A Study on the Comparison of Conventional Blasting vs Air-Tubes Blasting in the Tunnel)

  • 진정무;양국정;이천식;심동수;김용균;강대우
    • 화약ㆍ발파
    • /
    • 제20권3호
    • /
    • pp.49-58
    • /
    • 2002
  • 발파공법이 소개된 이후로 계속해서 많은 우수한 발파이론이 발표되어 왔다. 그러한 이론들의 저변에 있는 궁극적인 목표는 효율의 증가와 경제성이다. 이에 본 연구는 Air-Tubes 발파공법을 소개하고 터널에서 일반발파와 비교하여 그 발파효율을 검토해 보았다 연구의 배경이 되는 곳은 산청군 시천면 내대리와 하동관 묵계리를 연결하는 2차선 국도 터널 공사 현장이며 전체 총연장은 2Km이다. 진동측정방법은 하나의 발파진동을 4개의 측정기로 측정하여 데이터분석에 사용하였다. 일반발파와 Air-Tubes의 진동측정을 4개소에서 각각 6회씩 실시하여 총 24개씩의 진동측정 데이타를 얻었고 회귀분석을 실시하여 95% 신뢰도의 발파진동 추정식을 얻었다. 시험발파 및 진동측정에 이어 매 발파마다 광파측량을 실시하여 진행장을 구하였으며 사용한 장약량은 Air-Tubes 발파시 25% 정도 적게 사용하였고 발파진동이 23% 감소하였다. 발파당 굴진장 및 Smooth blasting 발파시의 벽면의 상태는 동일하고 파쇄석의 크기는 Air-Tubes 발파시 더 작게 나타난다.

철근콘크리트 기둥폭파 및 방호재료 특성에 대한 실험적 연구

  • 류창하;최수일;박용원;김양균
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.95-106
    • /
    • 1996
  • 건물발파해체 설계 및 시공에 있어서 중요한 공정의 하나는 불안정성을 유도하도록 실시하는 건물의 주요 지지부 기둥에 대한 발파이다. 이와 관련된 요소기술로는 기둥단면에 따라 천공패턴을 결정하고 적정장약량을 산정하는 것과 폭파시 파괴된 파편의 비산에 대한 방호기술을 들 수 있다. 비산은 인접건물에 대한 피해와 인명사고들을 유발할 수 있으므로 사전에 철저한 대책이 강구되어야 할 대상이다. (중략)

  • PDF