• Title/Summary/Keyword: 장애물 회피

Search Result 464, Processing Time 0.036 seconds

Mobile robot obstacle avoidance system using RFID tags built-in ultrasonic sensors (초음파 센서가 내장된 RFID 태그를 이용한 이동로봇 장애물 회피 시스템)

  • Lee, Chang-Won;Lee, Seung-Joon;Lim, Sam;Kim, Joo-Woong;Choi, Woo-Seung;Jung, Sung-Boo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.541-544
    • /
    • 2012
  • Recently, RFID-based mobile robot navigation technology for the study is on the march. Obstacle avoidance using existing RFID tag technology, the target is immediately recognizable through Stored in the tag for obstacle size and shape information. However, this technique is not easy to recognize a moving obstacle. In this paper, in order to this solve problem, mobile robot obstacle avoidance system is proposed using smart RFID tags attached to the ultrasonic sensor. Proposed system used Smart RFID tag is designed to the 900Mhz tags attached ultrasonic sensors. And captured moving obstacles information deliver mobile robot. Mobile robot modify driving information through delivery information. And the system keeps track of the best driving route. Usefulness of the proposed system was confirmed by simulations and experiments.

  • PDF

Sensor Based Path Planning and Obstacle Avoidance Using Predictive Local Target and Distributed Fuzzy Control in Unknown Environments (예측 지역 목표와 분산 퍼지 제어를 이용한 미지 환경에서의 센서 기반 경로 계획 및 장애물 회피)

  • Kwak, Hwan-Joo;Park, Gwi-Tae
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.150-158
    • /
    • 2009
  • For the autonomous movement, the optimal path planning connecting between current and target positions is essential, and the optimal path of mobile robot means obstacle-free and the shortest length path to a target position. Many actual mobile robots should move without any information of surrounded obstacles. Thus, this paper suggests new methods of path planning and obstacle avoidment, suitable in unknown environments. This method of path planning always tracks the local target expected as the optimal one, and the result of continuous tracking becomes the first generated moving path. This path, however, do not regard the collision with obstacles. Thus, this paper suggests a new method of obstacle avoidance resembled with the Potential Field method. Finally, a simulation confirms the performance and correctness of the path planning and obstacle avoidance, suggested in this paper.

  • PDF

Path Planning of a Mobile Robot with Vision System Using Fuzzy Rules (비전 시스템을 가지는 자율주행 이동로봇을 위한 퍼지 규칙을 이용한 경로 계획)

  • 김재훈;강근택;이원창
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.219-222
    • /
    • 2002
  • 본 논문에서는 미지의 환경에서 이동로봇의 자율 주행이 가능하도록 비전 시스템과 퍼지규칙을 이용한 경로 설정과 장애물 회피를 위한 알고리즘을 소개 하고자 한다. 한편 원격지에서도 로봇의 움직임을 파악할 수 있도록 인터넷을 통한 원격운용 기능을 추가함으로써 로봇의 효율적인 운용이 가능하도록 하였다. 소벨 연산자를 이용한 장애물의 윤곽선 추출과 퍼지규칙을 이용하여 경로 계획과 장애물 회피를 위한 알고리즘을 생성하였으며, 컴퓨터 시뮬레이션으로 그 효율성을 검증하였다. 또한 실제 이동 로봇을 제작하여 실험한 결과에서도 제안된 알고리즘이 우수한 성능을 발휘함을 확인할 수 있었다.

Obstacle Avoidance of GNSS Based AGVs Using Avoidance Vector (회피 벡터를 이용한 위성항법 기반 AGV의 장애물 회피)

  • Kang, Woo-Yong;Lee, Eun-Sung;Chun, Se-Bum;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.535-542
    • /
    • 2011
  • The Global Navigation Satellite System(GNSS) is being utilized in numerous applications. The research for autonomous guided vehicles(AGVs) using precise positioning of GNSS is in progress. GNSS based AGVs is useful for setting driving path. This AGV system is more efficient than the previous one. Escipecially, the obstacle is positioned the driving path. Previcious AGVs which follow marker or wires laid out on the road have to stop the front of obstacle. But GNSS based AGVS can continuously drive using obstacle avoidance. In this paper, we developed collision avoidance system for GNSS based AGV using laser scanner and collision avoidance path setting algorithm. And we analyzed the developed system.

A Fuzzy Control of Autonomous Mobile Robot for Obstacle Avoidance (장애물 회피를 위한 자율이동로봇의 퍼지제어)

  • Chae Moon-Seok;Jung Tae-Young;Kang Suk-Bum;Yang Tae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1718-1726
    • /
    • 2006
  • In this paper, we proposed a fuzzy controller and algorithm for efficiently obstacle avoidance in unknown space. The ultrasonic sensor is used for position and distance recognition of obstacle, and fuzzy controller is used for left and right wheels angular velocity control. The fuzzification is used singleton method and the control rule is each wheel forty-nine. The fuzzy inference is used simplified Mamdani's reasoning and defuzzification is used SCOG(Simplified Center Of Gravity). The computer simulation based on mobile robot modelling was performed for the capacity of fuzzy controller and the really applicable possibility revaluation of the proposed avoidance algorithm and fuzzy controller. As a result, mobile robot was exactly reached in target and it avoided obstacle efficiently.

Obstacle Avoidance Algorithm of a Mobile Robot using Image Information (화상 정보를 이용한 이동 로봇의 장애물 회피 알고리즘)

  • Kwon, O-Sang;Lee, Eung-Hyuk;Han, Yong-Hwan;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.139-149
    • /
    • 1998
  • There are some problems in robot navigations with a single kind of sensor. We propose a system that takes advantages of both CCD camera and ultrasonic sensors for the concerning matter. A coordinate extraction algorithm to avoid obstacles during the navigation is also proposed. We implemented a CCD based vision system at the front part of the vehicle and did experiments to verify the suggested algorithm's availability. From experimental results, the error rate was reduced when a CCD camera was used rather than when only ultrasonic sensors were used. Also we can generate path to avoid those obstacles using the measured values.

  • PDF

Formation Motion Control for Swarm Robot (군집 로봇의 포메이션 이동 제어)

  • La, Byung-Ho;Tak, Myung-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1886-1887
    • /
    • 2011
  • 본 논문은 군집 로봇 포메이션 이동 제어를 위한 방법을 제안한다. Potential field method 알고리즘을 이용하여 Leader-Bot의 장애물 회피와 이동 경로를 계획한다. Leader-bot을 기준으로 하는 Follewer-bot의 포메이션 형성을 위해 Formation generated function을 사용한다. Leader-bot과 Follower-bot들 간에 충돌회피와 Follower-bot들의 장애물 회피를 위해 Potential function을 적용한다. 제안한 방법은 시뮬레이션을 통하여 실제 운용 가능성을 검증한다.

  • PDF

A Study on the Obstacle-Avoidance Walking Algorithm of a Biped Robot (이족보행로봇의 장애물극복 보행알고리즘에 관한 연구)

  • Kim, Yong-Tae;Lee, Eun-Seon;Lee, He-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.686-691
    • /
    • 2003
  • In the paper, an intelligent biped walking robot that can overcome the obstacle is developed. Walking algorithms are designed based on the analysis of the human's manner of walking. Infrared sensors are used to detect the obstacles in the working environment and the remote controller of the biped robot use a RF module. The experiment results show that the developed biped walking robot can perform the stable static walking, attention walking, rotation and side stepping to avoid the obstacle, and hurdling the obstacle using the distance correction algorithm that is designed based on the distance information between the biped robot and the obstacle.

A Study on the Obstacle Avoidance of a Robot Manipulator by Using the Neural Optimization Network (신경최적화 회로를 이용한 로봇의 장애물 회피에 관한 연구)

  • 조용재;정낙영;한창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.267-276
    • /
    • 1993
  • This paper discusses the neural network application in the study on the obstacle avoidance of robot manipulator during the trajectory planning. The collision problem of two robot manipulators which are simultaneously moving in the same workspace is investigated. Instead of the traditional modeling method, this paper processing based on the calculation of joint angle in the cartesian coordinate with constrained condition shows the possibility of real time control. The problem of the falling into the local minima is cleared by the adaptive weight factor control using the temperature adding method. Computer simulations are shown for the verification.

A Study on the Obstacle Avoidance Control of Pipe Climbing Robot for Pipe Structure Inspection (파이프 구조물 검사를 위한 파이프 등반 로봇의 장애물 회피 제어 연구)

  • Lee, S-Ra-El;Lee, Sung-Uk;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.167-173
    • /
    • 2020
  • A lot of research has been done on pipe climbing robots to investigate the aging pipe structures of nuclear power plants and petrochemical plants. Nevertheless, most of the research on pipe climbing robots focused on the structural design and foundational motion control of pipe climbing robots. So, For the operator to control the pipe climbing robot, it has many difficulties to climb the pipe and avoid obstacles by manual operation. In this paper, propose an algorithm that recognizes obstacle by using camera images of pipe climbing robots, estimates the distance between pipe climbing robots and obstacles, and determines the position where pipe climbing robots can catch pipes to avoid obstacles between pipes.