• Title/Summary/Keyword: 장애물 탐지.회피

Search Result 24, Processing Time 0.024 seconds

A Study on the Design of the Dog Care Robot Using Obstacle Protection Algorithm (장애물 회피 알고리즘을 이용한 반려견 케어 로봇디자인에 관한 연구)

  • Chung, Yong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.140-149
    • /
    • 2018
  • Along with the recent increase in national income, social phenomena such as aging due to a decrease in population and an increase in single households are observed. There are also an increasing number of households raising pets in proportion to aging households and the increase in the number of single households, most of which use animal companions to overcome loneliness and boost domestic vitality. As more and more people consider pets as family members, the size of the domestic pet market is also growing. The growing number of pets in older households and single households is not properly managed by care such as food meals and exercise management for pets. It is necessary to research and develop robots that can monitor animal companions remotely, feed a certain amount of food at regular intervals, and manage their health through exercise. Among pet companions, dog selection is the highest. Therefore, this study identified robot research on driving methods, examples of existing pet care systems, and researched pet care robots using obstacle avoidance algorithms. In order to use the snack pay behavior and obstacle avoidance algorithm of the pet animals by applying IoT and we .oPI technology, it is able to use ultrasonic sensors on the front and has four infrared sensors on the back. However, this study does not reflect the characteristics of other pet animals as a study on pet care robots, and it requires continuous observation and testing.

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Performance Obstacle Detection Using Effective Beam Overlap (효과적인 빔 폭 중첩을 이용한 고성능 장애물 탐지용 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • This paper presents the systematic optimal design of an overlapped ultrasonic sensor ring for high performance obstacle detection using effective beam overlap. Basically, a set of low directivity ultrasonic sensors of the same type are arranged in a circle at regular intervals with their beams overlapped. First, both real and simplified beam patterns of an ultrasonic sensor and several sensor models for obstacle position estimation within its beam pattern are introduced. Second, the obstacle detection range of an overlapped ultrasonic sensor ring and its simple sensor model for obstacle position estimation are described. Third, for both conic and non-conic shaped beam pattern, the design indices of an overlapped ultrasonic sensor ring for minimal positional uncertainty in obstacle detection are defined. Fourth, the constraints imposed on the structural parameters of an overlapped ultrasonic sensor ring to guarantee non empty beam overlap and to avoid excessive beam overlap are derived. Fifth, the optimal number of ultrasonic sensors for a given radius of an overlapped ultrasonic sensor ring and the optimal radius of an overlapped ultrasonic sensor ring are determined. Throughout this paper, the MA40B8 from Murata Inc. is taken as a representative commercial low directivity ultrasonic sensor.

Multiple Target Tracking and Forward Velocity Control for Collision Avoidance of Autonomous Mobile Robot (실외 자율주행 로봇을 위한 다수의 동적 장애물 탐지 및 선속도 기반 장애물 회피기법 개발)

  • Kim, Sun-Do;Roh, Chi-Won;Kang, Yeon-Sik;Kang, Sung-Chul;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.635-641
    • /
    • 2008
  • In this paper, we used a laser range finder (LRF) to detect both the static and dynamic obstacles for the safe navigation of a mobile robot. LRF sensor measurements containing the information of obstacle's geometry are first processed to extract the characteristic points of the obstacle in the sensor field of view. Then the dynamic states of the characteristic points are approximated using kinematic model, which are tracked by associating the measurements with Probability Data Association Filter. Finally, the collision avoidance algorithm is developed by using fuzzy decision making algorithm depending on the states of the obstacles tracked by the proposed obstacle tracking algorithm. The performance of the proposed algorithm is evaluated through experiments with the experimental mobile robot.

A Development of Simulation System for 3D Path Planning of UUV (무인잠수정의 3차원 경로계획을 위한 시뮬레이션 시스템 개발)

  • Shin, Seoung-Chul;Seon, Hwi-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.701-704
    • /
    • 2010
  • In studying an autonomous navigation technique of UUV(Unmaned Underwater Vehicle), one of the many fundamental techniques is to plan a 3D path to complete the mission via realtime information received by sonar showing landscapes and obstacles. The simulation system is necessary to verify the algorithm in researching and developing 3D path planning of UUV. It is because 3D path planning of UUV should consider guide control, the dynamics, ocean environment, and search sonar models on the basis of obstacle avoidance technique. The simulation system developed in this paper visualizes the UUV's movement of avoiding obstacles, arriving at the goal position via waypoints by using C++ and OpenGL. Plus, it enables the user to setup the various underwater environment and obstacles by a user interface. It also provides a generalization that can verify path planning algorithm of UUV studied in any developing environment.

  • PDF

Development of Collision Avoidance System based on TCAS II for Smart UAV (TCAS II를 이용한 스마트무인기용 충돌회피시스템 개발)

  • Lee, Hyeon-Cheol;Kim, Seung-Ju
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.248-257
    • /
    • 2006
  • There will come someday when UAUs can fly into the airspace of manned aircraft in the near future because of the increasing number of operational UAUs together with technologies development. Since pilots of UAVs are on the gound, the equipment for sensing and avoiding obstacles in front is indispensable. In this paper, we analyze functions and interfaces of TCAS II, a collision avoidance device for manned aircraft, then find out whether it is suitable for the collision avoidance device for UAV and problems associated with it, if any. It turns out to be that the onboard directional antenna of TCAS II does not provide a precise directional information, and that the TCAS II is not assumed to be installed alone, but used as supplementary with other device which provides the better precision.

  • PDF

Vision-based Low-cost Walking Spatial Recognition Algorithm for the Safety of Blind People (시각장애인 안전을 위한 영상 기반 저비용 보행 공간 인지 알고리즘)

  • Sunghyun Kang;Sehun Lee;Junho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.81-89
    • /
    • 2023
  • In modern society, blind people face difficulties in navigating common environments such as sidewalks, elevators, and crosswalks. Research has been conducted to alleviate these inconveniences for the visually impaired through the use of visual and audio aids. However, such research often encounters limitations when it comes to practical implementation due to the high cost of wearable devices, high-performance CCTV systems, and voice sensors. In this paper, we propose an artificial intelligence fusion algorithm that utilizes low-cost video sensors integrated into smartphones to help blind people safely navigate their surroundings during walking. The proposed algorithm combines motion capture and object detection algorithms to detect moving people and various obstacles encountered during walking. We employed the MediaPipe library for motion capture to model and detect surrounding pedestrians during motion. Additionally, we used object detection algorithms to model and detect various obstacles that can occur during walking on sidewalks. Through experimentation, we validated the performance of the artificial intelligence fusion algorithm, achieving accuracy of 0.92, precision of 0.91, recall of 0.99, and an F1 score of 0.95. This research can assist blind people in navigating through obstacles such as bollards, shared scooters, and vehicles encountered during walking, thereby enhancing their mobility and safety.

The study of Mobile Robot using Searching Algorithm and Driving Direction Control with MAV (초소형비행체를 이용한 자율이동로봇의 경로탐색 및 방향제어에 관한 연구)

  • 김상헌;이동명;정재영;김관형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.105-119
    • /
    • 2003
  • 일반적인 로봇시스템은 자신이 이동해야 할 목표 지점을 자율적으로 생성할 수 없으므로 어떤 다른 시스템의 정보를 이용하여 주변을 탐색하거나 장애물을 인식하고 식별하여 자신의 제어전략을 수립한다. 그러므로 본 논문에서 제시한 시스템은 초소형 비행체를 이용하여 주위 환경과 자율 이동로봇의 위치 정보를 탐색할 수 있도록 시스템을 구성하였다 이러한 시스템의 성능은 로봇이 위치하고 있는 주위의 불완전한 정보로부터 적절한 결론을 유도해 낼 수 있어야 한다. 그러한 비선형적인 문제는 현재까지도 문제 해결을 위해 많은 연구가 진행되고 있다. 본 연구에서는 자율이동로봇의 행동 환경을 공간상의 제약을 받지 않는 비선형 시스템인 초소형 비행체에 극초단파(UHF16채널) 영상장치를 이용하여 호스트 PC로 전송하고 호스트 PC는 로봇의 현재 위치, 이동해야 할 목표위치, 장애물의 위치와 형태 등을 분석한다. 분석된 결과 파라메타는 RF-Module을 이용해서 로봇에 전송하고, 로봇은 그 데이터를 분석하여 동작하게 된다. 로봇이 오동작 또는 장애물로 인해 정확한 목적지까지 도달하지 못할 때 호스트 PC는 새로운 최단경로를 생성하거나 장애물을 회피 할 새로운 전략을 로봇에게 보내준다. 본 연구에 적용한 알고리즘은 초소형 비행체에서 탐지한 불완전한 영상정보에서도 비교적 신뢰도 놀은 결과를 보이는 A* 알고리즘을 사용하였다 적용한 알고리즘은 실험을 통하여 실시간으로 정보를 처리할 수 있었으며, 자율 이동로봇의 충돌회피나 최단 경로 생성과 같은 문제를 실험을 통하여 그 성능과 타당성을 검토하였다.delta}textitH]$를 도출하였다.rc}C$에서 30 ㎫의 압력으로 1시간동안 행하였다 소결한 시편들은 직사각형 형태로 가공하였으며 표면은 0.5$\mu\textrm{m}$의 다이아몬드 입자로 연마하였다. XRD, SEM 및 TEM을 이용하여 상분석 및 미세조직관찰을 행하였다. 파괴강도는 3중점 굽힘 법으로 (3-point bending test) 측정하였다. 이때 시편 하부의 지지 점간의 거리는 30mm, cross-head 속도는 0.5 mm/min으로 하였고 5개의 시편을 측정하여 평균값을 구하였다.ell/\textrm{cm}^3$, 혼합재료 3은 0.123$\ell/\textrm{cm}^3$, 0.017$\ell/\textrm{cm}^3$, 혼합재료 4는 0.055$\ell/\textrm{cm}^3$, 0.016$\ell/\textrm{cm}^3$, 혼합재료 5는 0.031$\ell/\textrm{cm}^3$, 0.015$\ell/\textrm{cm}^3$, 혼합재료 6은 0.111$\ell/\textrm{cm}^3$, 0.020$\ell/\textrm{cm}^3$로 나타났다. 3. 단일재료의 악취흡착성능 실험결과 암모니아는 코코넛, 소나무수피, 왕겨에서 흡착능력이 우수하게 나타났으며, 황화수소는 펄라이트, 왕겨, 소나무수피에서 다른 재료에 비하여 상대적으로

  • PDF

Survey on Developing Autonomous Micro Aerial Vehicles (드론 자율비행 기술 동향)

  • Kim, S.S.;Jung, S.G.;Cha, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • As sensors such as Inertial Measurement Unit, cameras, and Light Detection and Rangings have become cheaper and smaller, research has been actively conducted to implement functions automating micro aerial vehicles such as multirotor type drones. This would fully enable the autonomous flight of drones in the real world without human intervention. In this article, we present a survey of state-of-the-art development on autonomous drones. To build an autonomous drone, the essential components can be classified into pose estimation, environmental perception, and obstacle-free trajectory generation. To describe the trend, we selected three leading research groups-University of Pennsylvania, ETH Zurich, and Carnegie Mellon University-which have demonstrated impressive experiment results on automating drones using their estimation, perception, and trajectory generation techniques. For each group, we summarize the core of their algorithm and describe how they implemented those in such small-sized drones. Finally, we present our up to date research status on developing an autonomous drone.

Analysis and Design of Dron System for Smart Safety-City Platform Construction (스마트 안전도시 플랫폼 구축을 위한 드론 시스템의 분석 및 설계)

  • Cho, Byung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.93-99
    • /
    • 2020
  • It seems to be increased rapidly that practical uses of intelligent Dron for public mission performance such as surveillance, prevention of disaster accident, relief etc with Dron technology development. Dron is needed for major technology realization of detection and trace technology of target, flight control and obstacle avoidance during flighting, detection and control of landing point functions to use smart safety-city platform construction. This dron system cause a great ripple effect technically and promote industrialization in the field of new technology. In this paper, an effective analysis and design method of dron system software will be presented by showing user requirement analysis using object-oriented method, flowchart and screen design.

Collision Avoidance Sensor System for Mobile Crane (전지형 크레인의 인양물 충돌방지를 위한 환경탐지 센서 시스템 개발)

  • Kim, Ji-Chul;Kim, Young Jea;Kim, Mingeuk;Lee, Hanmin
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2022
  • Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver's vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.