• Title/Summary/Keyword: 장애물회피소나

Search Result 7, Processing Time 0.018 seconds

Development of Mechanism for Micro Surface Robot with Rotating Sonar-Beam (회전 소나빔을 갖는 초소형 수상로봇의 메커니즘 개발)

  • Kang, Hyung-Joo;Man, Dong-Woo;Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • Recently, the needs for the development and application of the micro marine robot (MMR) which has the advantages in terms of size and cost are increasing. However, the basis is very short in the domestic. While the obstacle avoidance sonar (OAS) which was optimized in terms of size and performance and has the ability of 4-directional detection was developed for the obstacle avoidance of the micro surface robot (MSR) fortunately, the problem that the detection performance is degraded according to the shape of the obstacle because of using the fixed sonar-beam with the limited beam width and detection range exists. To solve this problem, the MSR mechanism that implements the rotating sonar-beam using the spur gear and the servo motor is proposed in this paper. To verify the performance of the proposed mechanism, the wall-tracking of the MSR is considered and the comparison and analysis in term of detection performance and actuation command is performed with conventional fixed sonar-beam. The test results show the validity of the proposed mechanism.

Study on Local Path Control Method based on Beam Modeling of Obstacle Avoidance Sonar (장애물회피소나 빔 모델링 기반의 국부경로제어 기법 연구)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.218-224
    • /
    • 2012
  • Recently, as the needs of developing the micro autonomous underwater vehicle (AUV) are increasing, the acquisition of the elementary technology is urgent. While they mostly utilizes information of the forward looking sonar (FLS) in conventional studies of the local path control as an elementary technology, it is desirable to use the obstacle avoidance sonar (OAS) because the size of the FLS is not suitable for the micro AUV. In brief, the local path control system based on the OAS for the micro AUV operates with the following problems: the OAS offers low bearing resolution and local range information, it requires the system that has reduced power consumption to extend the mission execution time, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent local path control algorithm based on the beam modeling of OAS with the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance and analyze the characteristic of the proposed algorithm, the course control of the underwater flight vehicle (UFV) is performed in the horizontal plane. Simulation results show that the feasibility of real application and the necessity of additional work in the proposed algorithm.

Intelligent 3-D Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 3-D 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok;Sur, Joo-No
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.323-328
    • /
    • 2011
  • In real system application, the 3-D obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: the sonar offers the range/bearing information of obstacles in a local detection area, it requires the system that has reduced acoustic noise and power consumption in terms of the autonomous underwater vehicle (AUV), it has the UFV operation constraints such as maximum pitch and depth, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent 3-D obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the 3-D obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

Intelligent Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.635-640
    • /
    • 2009
  • In real system application, the obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: it has local information because the sonar can only offer the obstacle information in a local detection area, it requires a continuous control input because the system that has reduced acoustic noise and power consumption is necessary, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

A Design of Collision Avoidance System of an Underwater Vehicle (수중운동체의 충돌회피시스템에 대한 연구)

  • Nam-Sun Son;Key-Pyo Rhee;Sang-Mu Lee;Dong-Jin Yeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • An Obstacle Avoidance System(OAS) of Underwater Vehicle(UV) in diving and steering plane is investigated. The concept of Imaginary Reference Line(IRL), which acts as the seabed in the diving plane, is introduced to apply the diving plane avoidance algorithm to the steering plane algorithm. Furthermore, the distance to the obstacle and the slope information of the obstacle are used for more efficient and safer avoidance. As for the control algorithm, the sliding mode controller is adopted to consider the nonlinearity of the equations of motion and to get the robustness of the designed system. To verify the obstacle avoidance ability of the designed system, numerical simulations are carried out on the cases of some presumed three-dimensional obstacles. The effects of the sonar and the clearance factor used in avoidance algorithm are also investigated. Through these, it is found that the designed avoidance system can successfully cope with various obstacles and the detection range of sonar is proven to bea significant parameter to the performance of the avoidance.

  • PDF

A Development of Simulation System for 3D Path Planning of UUV (무인잠수정의 3차원 경로계획을 위한 시뮬레이션 시스템 개발)

  • Shin, Seoung-Chul;Seon, Hwi-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.701-704
    • /
    • 2010
  • In studying an autonomous navigation technique of UUV(Unmaned Underwater Vehicle), one of the many fundamental techniques is to plan a 3D path to complete the mission via realtime information received by sonar showing landscapes and obstacles. The simulation system is necessary to verify the algorithm in researching and developing 3D path planning of UUV. It is because 3D path planning of UUV should consider guide control, the dynamics, ocean environment, and search sonar models on the basis of obstacle avoidance technique. The simulation system developed in this paper visualizes the UUV's movement of avoiding obstacles, arriving at the goal position via waypoints by using C++ and OpenGL. Plus, it enables the user to setup the various underwater environment and obstacles by a user interface. It also provides a generalization that can verify path planning algorithm of UUV studied in any developing environment.

  • PDF

A Study of the Depth Control System and the Collision Avoidance System for the Manta-type UUV (만타형 UUV의 심도제어와 충돌회피에 관한 연구)

  • Kim, Ju-Han;Lee, Seung-Keon;Lee, Sang-Eui;Bae, Cheol-Han
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.447-452
    • /
    • 2008
  • In this paper, the automatic depth control system and the collision avoidance system of the Manta UUV have been established in vertical and horizontal plane. The PID control theory and the Fuzzy theory are adopted in this system. The 6-DOF MMG model had been established by theoretical calculations and captive model test results. The depth control simulation results have been fully presented. The collision risks of the UUV had calculated by the fuzzy theory with the virtual sonar system. Finally, the automatic depth control system and the collision avoidance simulation system of Manta UUV have been fully developed and simulated.