• Title/Summary/Keyword: 장애물감지

Search Result 143, Processing Time 0.02 seconds

Improving Safety of Biycle Driver System using Arduino (아두이노를 활용한 자전거 운전자 안전 향상 시스템)

  • Bae, Tae-Hyeon;Kang, Jong-Ho;Park, Ji-Won;Kim, Bum-Su;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.525-532
    • /
    • 2017
  • The system is consisted of arduino and sensors for protecting bicycle and safety of driver. The speed indicator is composed of speed alarms which are less than 15km/h, 15~30km/h, over 30km/h through limit switch. At that time, the accuracy is 96.6% compared to actual speed. Also, It gives a person warning ablut the obstacle of 5cm tall through ultrasonic sensor in night. Auto Lock System is operated to protect bicycle and the text message is sent to the user, if the bicycle lock was broken. This system puts emphasis on safety and usability, providing a application to know consuming calories.

Design and Implementation of 4SM(4-Sided Mirror) System based on Car PC for Enhancing Driver's Visibility (운전자 시야 개선을 위한 차량용 PC 기반 4SM(4-Sided Mirror) 시스템 설계 및 구현)

  • Yu, Young-Ho;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.152-156
    • /
    • 2011
  • AVM(Around View Monitoring) 시스템은 차량 주변에 대한 영상을 운전자에게 제공함으로써 안전 운전을 도와주는 시스템이다. 측면 거울이나 실내 거울을 통해서 볼 수 없는 사각 지대는 운전자의 안전 운행에 위협이 된다. 사각지대는 특히 후진 주행, 주차, 좁은 골목길 주행, 굽은 길 회전 등에서 차량 파손 및 인사 사고의 원인이 된다. 이러한 위험을 피하기 위해 후방의 장애물을 감지하는 후방 센서나 후방 카메라 등과 같은 운전자의 시야를 개선하는 ECU들이 개발되어 사용되고 있다. 이러한 ECU들의 도움을 받더라도 차량의 전, 후, 좌, 우 사방의 상황을 동시에 볼 수 없기 때문에 사고를 피하기 위해 운전자들은 주의를 기울여 운전해야 한다. 본 논문에서는 운전자의 안전 운행을 돕기 위해 차량 주변 영상을 실시간으로 제공하는 4SM 시스템을 설계하고 구현한다. 본 논문에서 제안하는 4SM 시스템은 차량의 전, 후, 좌, 우에 장착된 4대의 카메라로부터 입력된 영상을 통합하여 Bird's Eye View 영상을 운전자가 한 눈에 차량 주변 상황을 인식할 수 있도록 한다.

  • PDF

Pattern Recognition Using 2D Laser Scanner Shaking (2D 레이저 스캐너 흔듦을 이용한 패턴인식)

  • Kwon, Seongkyung;Jo, Haejoon;Yoon, Jinyoung;Lee, Hoseung;Lee, Jaechun;Kwak, Sungwoo;Choi, Haewoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.138-144
    • /
    • 2014
  • Now, Autonomous unmanned vehicle has become an issue in next generation technology. 2D Laser scanner as the distance measurement sensor is used. 2D Laser scanner detects the distance of 80m, measured angle is -5 to 185 degree. Laser scanner detects only the plane, but using motor swings. As a result, traffic signs detect and analyze patterns. Traffic signs when driving at low speed, shape of the detected pattern is very similar. By shaking the laser scanner, traffic signs and other obstacles became clear distinction.

Real time Omni-directional Object Detection Using Background Subtraction of Fisheye Image (어안 이미지의 배경 제거 기법을 이용한 실시간 전방향 장애물 감지)

  • Choi, Yun-Won;Kwon, Kee-Koo;Kim, Jong-Hyo;Na, Kyung-Jin;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.766-772
    • /
    • 2015
  • This paper proposes an object detection method based on motion estimation using background subtraction in the fisheye images obtained through omni-directional camera mounted on the vehicle. Recently, most of the vehicles installed with rear camera as a standard option, as well as various camera systems for safety. However, differently from the conventional object detection using the image obtained from the camera, the embedded system installed in the vehicle is difficult to apply a complicated algorithm because of its inherent low processing performance. In general, the embedded system needs system-dependent algorithm because it has lower processing performance than the computer. In this paper, the location of object is estimated from the information of object's motion obtained by applying a background subtraction method which compares the previous frames with the current ones. The real-time detection performance of the proposed method for object detection is verified experimentally on embedded board by comparing the proposed algorithm with the object detection based on LKOF (Lucas-Kanade optical flow).

2-Layer Fuzzy Controller for Behavior Control of Mobile Robot (이동로봇의 행동제어를 위한 2-Layer Fuzzy Controller)

  • Sim, Kwee-Bo;Byun, Kwang-Sub;Park, Chang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.287-292
    • /
    • 2003
  • The ability of robot is being various and complex. The robot is utilizing distance, image data and voice data for sensing its circumstance. This paper suggests the 2-layer fuzzy control as the algorithm that control robot with various sensor information. In a obstacle avoidance, it utilizes many range finders and classifies them into 3parts(front, left, right). In 3 sub-controllers, the controller executes fuzzy conference. And then it executes combined control with a combination of outputs of 3 sub-controllers in the second step. The text compares the 2-layer fuzzy controller with the hierarchical fuzzy controller that has analogous structure. And the performance of the 2-layer fuzzy controller is confirmed by application this controller to robot following, simulation to each other and real experiment.

Boundary Node Detection in Wireless Sensor Network (무선 센서 네트워크의 경계노드 검출)

  • Kim, Youngkyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.367-372
    • /
    • 2018
  • This paper proposed an algorithm that detects boundary nodes effectively in wireless sensor network. A boundary node is a sensor that lies on the border of network holes or the outer boundary of wireless sensor network. Proposed algorithm detects boundary nodes using only the position information of sensors. In addition, to improve detect performance, sensor computes the overlap area of nearest sensor first. Simulation is performed to validate the process of the proposed algorithm. In Simulation, several obstacles are placed and varying number of sensors in the range of 500~1500 are deployed in the area in order to reflect real world. The simulation results shows that proposed algorithm detects boundary nodes effectively that are located on the border of holes and the outer boundary of wireless sensor network.

Design of 24GHz Patch Array Antenna for Detecting Obstacles (장애물 감지용 24GHz 대역 패치 배열 안테나 설계)

  • Lee, Kwang;Kim, Young-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1075-1080
    • /
    • 2021
  • In this paper, we designed a 24.4GHz 2-channel TX and 4-channel RX patch array antenna mounted on a short-range vehicle radar system to simultaneously measure the range and speed of a single object within a single measurement cycle. The antenna was designed and fabricated using Rogers' RO4350B(εr=3.48, 0.5T) board. Through measurement, it was confirmed that the design specifications of antenna gain (> 10dBi or more) and radiation pattern (Elevation HPBW > 10deg.) were satisfied at 24.4 GHz frequency.

Logistics Sorting System using Autonomous Driving Robot (자율주행 로봇을 이용한 물류 자동분류 시스템)

  • Kim, Tae-Sun;Kim, Sang-Hyeok;Kim, Ki-Hun;Oh, Yong-Teak;Lee, Jae-Hong;Jo, Woo-Bin;Kim, Kyung-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.491-492
    • /
    • 2021
  • 현대사회의 물류 현장에서 근로자가 직접 물류를 분류하는 작업을 하거나 상하차 작업을 진행하고 있다. 본 논문에서 제안하는 자율주행 로봇을 이용한 물류 분류 시스템은 물류 운반 로봇과 컨베이어 벨트로 구성된다. 물류 운반 로봇은 경로 설정 및 장애물 감지가 가능한 자율주행 기능을 가지며, 컨베이어 벨트는 하차된 물류의 무게 측정과 배송 가격을 표시하는 기능을 가진다. 본 연구의 결과는 근로자들의 노동 강도와 육체적 또는 정신적인 피해로 인해 발생하는 산업재해의 발생률을 감소시킬 수 있는 기대와 심야 시간에 부족한 인력을 보충하여 24시간 물류센터를 가동할 수 있는 가능성을 가진다.

  • PDF

Simulating Group Movement on a Roadmap-based Path (로드맵 기반 경로에서의 그룹 이동 시뮬레이션)

  • Yu, Kyeon-Ah;Cho, Su-Jin;Kim, Kyung-Hye
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.105-114
    • /
    • 2011
  • The roadmap-based planning is a path planning method which is used widely for a goal-directed movement in Robotics and has been applied to the world of computer animation such as computer games. However it is unnatural for computer characters to follow the path planned by the roadmap method as it is performed in Robotics. Flocking which is used for realistic and natural movements in computer animation enables character's movement by using a few simple rules without planning unlike the roadmap method. However it is impossible to achieve a goal-directed movement with flocking only because it does not keep states. In this paper we propose a simulation method which combines planning based on the road map with reactive actions for natural movements along the path planned. We define and implement steering behaviors for a leader which are needed to follow the trajectory naturally by analysing characteristics of roadmap-based paths and for the rest of members which follow the leader in various manners by detecting obstacles. The simulations are performed and demonstrated by using the implemented steering behaviors on every possible combination of roadmap-based path planning methods and models of configuration spaces. We also show that the detection of obstacle-collisions can be done effectively because paths are planned in the configuration space in which a moving object is reduced to a point.

The Design of the Obstacle Avoidances System for Unmanned Vehicle Using a Depth Camera (깊이 카메라를 이용한 무인이동체의 장애물 회피 시스템 설계)

  • Kim, Min-Joon;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.224-226
    • /
    • 2016
  • With the technical development and rapid increase of private demand, the new market for unmanned vehicle combined with the characteristics of 'unmanned automation' and 'vehicle' is rapidly growing. Even though the pilot driving is currently allowed in some countries, there is no country that has institutionalized the formal driving of self-driving cars. In case of the existing vehicles, safety incidents are frequently happening due to the frequent malfunction of the rear sensor, blind spot of the rear camera, or drivers' carelessness. Once such minor flaws are complemented, the relevant regulations for the commercialization of self-driving car and small drone could be relieved. Contrary to the ultrasonic and laser sensors used for the existing vehicles, this paper aims to attempt the distance measurement by using the depth sensor. A depth camera calculates the distance data based on the TOF method calculating the time difference by lighting laser or infrared light onto an object or area and then receiving the beam coming back. As this camera can obtain the depth data in the pixel unit of CCD camera, it can be used for collecting depth data in real-time. This paper suggests to solve problems mentioned above by using depth data in real-time and also to design the obstacle avoidance system through distance measurement.

  • PDF