• Title/Summary/Keyword: 장석 풍화

Search Result 95, Processing Time 0.029 seconds

Tafoni Patterns on Tuff Slopes in Gogulsa Temple, Gyeongju and Its Microstructural Properties (경주 골굴사 응회암 사면의 타포니 분포 특성과 미세구조)

  • Choo, Chang-Oh;Lee, Jin-Kook
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.339-350
    • /
    • 2022
  • There are a variety of types in tafoni formed in Miocene tuff from Golgulsa, Gyeongju. Tuff bearing tafoni was quite weathered, composed of quartz, feldspars, micas, vermiculite, chlorite, smectite, and analcite. In the early stage of the tafoni development, tafoni preferentially formed from cavities where volcanic breccias were removed or from microcavities where microcrystals were chemically altered. Small tafoni grew into large one by merging each other. The orientation of tafoni is inversely arranged to slopes, with slight inclination toward the inner cavity. Height, width, and depth of tafoni are closely interrelated: the correlation coefficients are 0.839 (width-height), 0.900 (width-depth), and 0.856 (height-depth), respectively. Removal of walls between tafoni resulted in lenticular or crescent forms, and small tafoni laterally combined to large tafoni. Large tafoni is weak because of high porosity and low strength compared to normal slope. Therefore, systematic monitoring for slope strength, pore proportion and volume, and growth of cavity needs to secure the slope stability where tafoni in Golgulsa is widespread.

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition (지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구)

  • Park, Jinyoung;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.221-234
    • /
    • 2013
  • Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

A Study on the Characteristics and the Growth Mechanism of Surface Cracks from the Naksansa Seven-Storied Stone Pagoda, Korea (낙산사 칠층석탑에 발달한 표면균열의 특성과 성장 메커니즘)

  • Park, Sung-chul;Kim, Jae-hwan;Jwa, Yong-joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.136-149
    • /
    • 2013
  • We studied the characteristics and the growth mechanism of surface cracks from the Naksansa seven-storied stone pagoda(Treasure No. 499). The pagoda is composed of both medium-grained, porphyritic biotite granite and hornblende-biotite granite. Alkali feldspar megacrysts are easily found as phenocrysts in the rocks. Surface cracks intensely developed at the lower part of the stone pagoda, and their directions are of vertical, horizontal, and diagonal. The rocks of the pagoda have intrinsic microcracks which can be defined as rift and grain rock cleavages. Both rock cleavages seems likely to have led to the crack growth and consequently to the mechanical deterioration of the pagoda. The vertical cracks developed parallel to the vertical compressive stress, whereas horizontal ones formed by tensile strength normal to the vertical compression. In addition mineral cleavages and twin planes of alkali feldspar phenocrysts seems to have been closely related to the mechanical breakdown of the rocks in the NE part of the pagoda.

Material Characteristics and Clay Source Interpretation of Crucibles in Baekje Kingdom Excavated from the Ssangbukri Site in Buyeo, Korea (부여 쌍북리 유적 출토 백제 도가니의 재료학적 특성과 원료의 산지해석)

  • Kim, Ji-Young;Park, Jin-Young;Park, Dae-Sun;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • The crucibles of Baekje Kingdom from the Ssangbukri Site which were used for glass and metal melting had light brown, grayish blue and grayish brown colored bodies. In thin section, the crucibles contained numerous quartz grains and pottery fragments. The surface was covered with fine grained quartz for thermal resistance. Based on decomposition of mica group minerals and formation of mullite detected by X-ray diffraction analysis, it was inferred that all crucibles have been fired over $1,000^{\circ}C$. It was also found that firing temperature has exceeded $1,100^{\circ}C$ in some crucibles because feldspar was not detected. The maximum temperature was assumed at $1,200^{\circ}C$. The magnetic susceptibility values and geochemical characteristics sorted out the crucibles into two groups that differed from the characteristics of the local soils. This reflected geological setting of the site where the alluvium was formed from two kinds of surrounding rock masses, granite gneiss and biotite granite. However, the local soils had similarities with the crucibles in weathering degree and geochemical behavior of major elements. In consequence, it was considered that the raw clay of the crucibles was supplied from the local area of the site.

Petrological Characteristics and Deterioration Aspect of the Pohang Chilpori and Shinheungri Petroglyphs (포항 칠포리 I지구와 신흥리 암각화의 암석학적 특징과 훼손양상 분석)

  • Lee, Sang-Hun;Choi, Gi-Ju
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.347-361
    • /
    • 2009
  • The Pohang Chilpori is the area with abundant petroglyphs in Korea. The form of the shield, female sex organs, and yut board on the outcrops or float rocks which are composed of the rhyolitic rock are engraved on Chilpori and Shinheungri Petroglyphs. The rhyolitic rock is composed of the phenocryst and groundmass with quartz and feldspar. The rock surface shows mostly yellowish brown color and the rock surface is very irregular by serious weathering, and illite and kaolinite, a kind of the clay minerals, are produced. Deterioration aspects are mainly of surface exfoliation, grain peel-off, damages, scribbling. Chilpori Petroglyph (1) plane has been eroded by running water, in (2) plane has been abrased is on the rock surface, in (3) plane shows surface exfoliation and the various part of the rock surface in plane (4) has become the soil. The corrasion and black phenomenon of the Shinheungri Petroglyph (1) plane was formed by running water, and surface exfoliation and scribbling in plane (2) is serious. Deterioration factors are geomorphologic states, plants, rock of weak to weathering, and artificial influence such as a scribbling and a forest fire. For conservation of the these petroglyphs, study for rock surface conservation and the arrangement of around petroglyphs and construction of water wall are necessary.

  • PDF

Effects of Weathering Processes on Radioactive Cesium Sorption with Mineral Characterization in Korean Nuclear Facility Site (국내 원전 부지 내 암석의 광물학적 특성 규명 및 풍화에 따른 방사성 세슘(137Cs)의 흡착 평가)

  • Chang, Seeun;Choung, Sungwook;Um, Wooyong;Chon, Chul-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • This study was to characterize the minerals in fractured and bedrock zone, and determine quantitatively sorption for radioactive cesium ($^{137}Cs$) at the Korean nuclear facility site. The rock samples were granite group that mainly consists of quartz and feldspar with 10~20% mica minerals. Chlorite was observed as secondary mineral for the rock samples collected from fractured zone, but not for bedrock samples. The $^{137}Cs$ sorption distribution coefficients increased to $K_d$ = 880~960 mL/g in the fractured zone because of the presence of secondary minerals formed by weathering processes, compared to the bedrock zone ($K_d$ = 820~840 mL/g). These results suggest that the released $^{137}Cs$ to groundwater environment could be significantly retarded in the fractured zone in the case of severe nuclear accident at the study site.

Mineralogical Evolution of Non-Andic Soils, Jeju Island (제주도 Non-Andic 토양의 광물학적 진화)

  • 하대호;유장한;문희수;이규호;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.491-508
    • /
    • 2002
  • While about 80% of Jeju soils are classified as Andisols, the soils derived from volcanic ash in Dangsanbong are not Andisols. There is a significant difference of precipitation in localities of Jeju island. The study area is characterized by the lowest amount of annual rainfall in Jeju Island, and by the layered silicates as dominant solid phase in clay fraction. The purpose of this study was to characterize the mineralogy of the non-Andie soils in detail, especially hydroxy-interlayered silicates. Two major soil horizons are recognized in the soil profile developed in the Dangsanbong area, which can be designated as A and C. The soil pH($H_{2}0$), ranges from 6.6 to 7.3 increasing with depth, is higher than that of typical Andisols(pH<6.0). While the pH(NaF), ranges from 9.49 to 9.81, indicates that significant amount of amorphous phases might be present as exchanging complexes. It is estimated to about 1.542.88 wt% by using chemical selective dissolution. The organic content of surface horizon is about 2 wt%. This soil are composed of quartz, feldspar and olivine as major constituents with minor of silicate clays. Quartz is frequently observed in A and distinctly decreases in its amount with depth, while olivine is dominant phase in C and rarely observed in A. In the <0.2$\mu\textrm{m}$ size fraction, smectite and kaolinite/smectite interstratification are dominant with minor of illite. The amounts of smectite decrease with depth, while the amounts of kaolinite/smecite interstratification increase with depth, which indicates the trend of mineral transformation with increasing the degree of weathering. The proportion of kaolinite in kaolinite/smectite interstratification is about 85%, and is not changed significantly through the profile. In the 2-0.2$\mu\textrm{m}$size fraction, vermiculite, smectite, illite and kaolinite are major components with minor of chlorite. Most of chlorite are interstratified with smectite. Chlorite which is not interstratified with smectite occurs only in surface horizon. The proportion of the chlorite in the chlorite/smectite interstratification is 59-70(%) and increases with depth. Hydroxy-interlayered vermiculite(HIV) with hydroxy-Fe/AI in their interlayers occurs in both A and C horizon. The amounts of hydroxy-Fe/AI decrease with depth. Hydroxy-interlayered smectite(HIS) of which interlayers might be composed of hydroxy-Mg/Al occurs only in C horizon. As the results of mineralogical investigation for the soil profile in the study area, clay minerals might be changed and evolved through the following weathering sequences: 1) Smectite Kaolinite, HIS, Vermiculite, 2) Vermiculite HIV Chlorite.

Mineralogy and Chemical Properties according to Particle Size Separation of Hwangto (Reddish Residual Soil) used in Feeding of Cattle (한우 사육에 이웅한 황토(풍화토)의 입도분리에 따른 광물성분 및 화학적 특성)

  • 황진연;박현진;양경희;이효민
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2002
  • Mineral composition and chemical properties of Hwangto (reddish residual soil) that used in feeding of cattles at Iksan, Jeollabuk-do, Korea were examined according to particle size separation such as gravel, sand, silt, coarse clay and fine clay. Mineral composition analyses reveal that gravel and sand are mainly composed of quartz and feldspars and that kaolin mineral and illite are dominant in clay and silt. Iron oxides are mainly included in fine clay. According to chemical analyses of major elements, Al, Fe and $H_2O$ contents are increased with decreasing of particle size. This trend well agrees with increase of clay minerals in smaller particles, Chemical analyses of trace elements indicate that contents of Zn, Rb, Sr, Ba, Pb significantly differ with particle sizes. Ba and Sr are included in feldspars since these elements are abundant in sand containing abundant feldspars. Pb and Sm are abundant in sample before particle size separation, but the contents are significantly decreased after separation. Therefore, most of these elements appear to be existed as removable phase. Nb, La, Th, Ce are more abundant in silt. The contents of all the other trace elements tend to be increased in smaller particles containing more clay minerals. The contents of changeable cations and teachable elements in acid and alkali solutions are high in clay samples. All the above results indicate that using the portion of smaller particle of Hwangto for livestock feed rather than bulk Hwangto can improve cation exchangeable capacity, ion leaching capacity and sorption properties.

Petrology of Host Body of Feldspar Deposits in Jechon Ganites (장석광상 모암인 제천반상화강암의 암석학적 특성)

  • Lee, Han-Yeang;Kim, Dai-Oap;Park, Joong-Kwon
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.405-414
    • /
    • 2001
  • Jecheon granite can be divided into two types; porphyritic granite (K-feldspar megacryst bearing) and medium-grained biotite granite. Porphyritic granite, host body of feldspar deposits, is 8${\sim}$11 km in diameter and about 80 $km^{2}$ in area. It mainly contains K-feldspar, plagioclase, biotite and quartz, and magnetite, zircon, sphene and apatite are accessary minerals. Enclosed minerals in K-feldspar megacryst with 3${\sim}$10 cm in diameter are hornblende, plagioclase, quartz, magnetite, apatite, sphene and zircon. Mafic enclaves mainly consisting of hornblende, plagioclase and quartz are frequently observed in porphrytic granite. Medium-grained biotite granite consists of K-feldspar, plagioclase, biotite and hornblende as main, and hematite, muscovite, apatite and zircon as accessary minerals. Core and rim An contents of plagioclase from porphyritic granite, medium biotite granite, K-feldspar megacryst, and mafic enclave are 36 and 21, 40 and 32, 37 and 32, and 43 and 36, respectively. $X_{Fe}$ values of hornblende are 0.57 at biotite granite, 0.51 at K-feldspar mehacryst and 0.45 at mafic enclave. $X_{Fe}$ values of biotite and hornblende are homogeneous without chemical zonation. K-feldspar megacryst shows end member of pure composition with exsolved thin lamellar pure albites. Characteristics of mineral compositions and petrography indicate porphyritic granite is igneous origin and medium-grained biotite granite comes from the same source of magma; biotite granite is initiated to solidly and from residual melt porphyritic granite can be formed. Possibly K-feldspar megacrysts are formde under H$_{2}$O undersaturation condition and near K-feldspar solidus curve temperature; growth rate is faster than nucleation rate. Mafic enclaves are thought to be mingled mafic magma in felsic magma, which is formed from compositional stratigraphy. Estimated equilibrium temperature and pressure for medium-grained biotite granite are about $800^{\circ}C$ and 4.83${\sim}$5.27 Kb, respectively.

  • PDF

Submicroscopy of Forest Soils (kandiustults) Derived from Granite in Southern Part of Korea (우리나라 남부지역(南部地域) 화강암질(花崗巖質) 삼림토양(森林土壤)의 SEM과 TEM에 의한 관찰(觀察))

  • Cho, Hi Doo;An, Ki Wan
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.5
    • /
    • pp.608-618
    • /
    • 2001
  • To understand the weathering processes of the soil by submicroscopic method is very important to realize the properties of the soils. In this study soil formation processes show every steps to the changes in chemical and mechanical properties and the submicroscopic characteristics of soil weathering on the profiles of forest soils derived from granite in southern part of Korea. Fecal pellets(SEM) are given a full detail of the positive activities of the forest soil animals; mainly invertebrates in the O horizon and the E horizon. External shapes of fecal pellets have been divided into five groups : spherical, ellipsoidal, cylindrical, platy and threadlike. But doughnutlike form of fecal pellets is observed in this study. The soluble and suspended materials in the soils move downwards by percolation from the A horizon to the B or the BC horizons, and result in the illuviation cutans(SEM) on the ped surface of the lower horizon and deposited stack of kaolinite. Illuviated cutans are deposited on the ped surface even in the depth of 312cm in the BC horizon as well as the Bt horizon and comprise of fine silt, coarse clay and fine clay. A lot of halloysites are observed on the cutan surface. Halloysite formation from feldspars has been well known but a lot of hallyosite formation are observed in this study. The formation were predicted by Jackson(1962), inferred by Wada and Kakuto(1983a, b) and proved evidently by Cho and Mermut(1992a, b). This also suggests that halloysites in the soils derived from granite are formed a lot from ferruginous chlorites. The release of Fe from the chlorite structure are significant pedogenic processes and newly formed Fe oxides imparted a red color to the soils. The iron oxides particles, which are ejected and recrystalized, aggregate thickly on the edge of the ferruginous chlorites, and this indicates the release of structural Fe from weathered chlorites. Hematites and goethites are frequent in the fine clay in this soils.

  • PDF