• Title/Summary/Keyword: 장르 선호도

Search Result 154, Processing Time 0.023 seconds

A Music Recommendation System using Collaborative Filtering (협업필터링을 이용한 음악 추천 시스템)

  • Park, Ju-Hyun;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1163-1165
    • /
    • 2015
  • 최근 들어, 사용자의 선호도를 고려한 음악추천 시스템의 연구가 활발히 진행되고 있다. 대부분의 음악 추천 시스템은 사용자가 들었던 곡을 분석하여 유사한 노래를 추천하는 시스템을 사용하여 비슷한 성향에서 벗어나지 못한 추천으로 다양한 사용자의 선호도를 만족시키는데 한계가 있었다. 본 논문에서는 개인 정보인 성별, 나이, 지역, 계절, 장르에 가중치를 활용하여 각각의 개인에 가장 알맞은 음악 추천 시스템을 설계하고 구현한다.

Personalized EPG Application using Automatic User Preference Learning Method (사용자 선호도 자동 학습 방법을 이용한 개인용 전자 프로그램 가이드 어플리케이션 개발)

  • Lim J;Jeong H;Kang S;Kim M;Kang K
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.151-154
    • /
    • 2004
  • 디지털 방송의 시작과 함께, 지상파, 위성, 케이블과 같은 다양한 매체를 통한 다채널 방송 시청 환경의 도래는 사용자에게 많은 방송 프로그램 시청 정보를 전달하게 되었다. 이와 더불어, 방송 단말에 전송된 다양한 방송 프로그램 정보를 탐색하고 선호 방송 프로그램을 선별하기 위해서는 사용자에게 많은 노력이 요구된다. 이러한 요구에 따라, 똔 논문에서는 다채널 방송 시청 환경 하에서 사용자의 방송 프로그램 시청 히스토리를 분석하고, 특정 시간에 따른 사용자의 방송 프로그램 시청 패턴을 추출하여 방송 프로그램 장르에 대한 사용자 선호도를 자동으로 계산하는 알고리즘을 제안하고, MPEG-7 MDS 구조에 따른 사용자 선호도 서술과 사용자의 선호도에 따라 방송 프로그램을 자동적으로 추천하는 TV 프로그램 추천 어플리케이션을 소개한다 본 실험을 위해 실제 연령대별, 성별, 시간대별로 사용자의 TV 시청 자료를 사용하였으며, 실험결과를 통해 본 논문에 제안된 베이시안 네트워크 기반 사용자 자동 학습 알고리즘이 효과적으로 사용자 선호도를 학습할 수 있음을 확인하였다.

  • PDF

Determinants of User Immersion for Korean Drama and Entertainment Genre Programs among Chinese Students in Korea (중국 유학생의 한국 드라마 및 오락 프로그램 몰입 결정 요인)

  • Ma, Si;Chon, Bum-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.111-119
    • /
    • 2012
  • This study examines determinants of user immersion for Korean drama and entertainment genre programs among Chinese students in Korea. The major results are as follows: firstly, user immersion for entertainment genre was more greater than that of drama genre. Although drama was tended to evaluated based on star appearance and narrative structure, entertainment program was favored by its pleasure and vividness. Secondly, there were gender differences for entertainment and drama genre programs between male and female respondents. Also, there was a correlation between drama immersion and duration of stay. Thirdly, although determinants of drama immersion were program characteristics, duration of stay and drama preference, those of entertainment immersion were program characteristics, appearance of star players and entertainment preference.

Broadcasting Service for Personalized Video Skim (개인화된 비디오 요약 방송 서비스)

  • Jin Sung Ho;Cho Jun Ho;Bea Tea Meon;Ro Yong Man;Kang Kyeongok;Hong Jinwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.143-146
    • /
    • 2004
  • 본 논문은 시청자 개개인의 선호도 정보(user preference)를 이용하여, 컨텐츠 제공자(content provider)로부터 개인화 된 비디오 요약을 제공받을 수 있는 맞춤형 방송 서비스를 제안한다. 제안하는 방송 서비스는 다채널의 디지털 방송 환경에서 시청자들에게는 채널선택의 편의성과, 컨텐츠 제공자들에게는 시청자들이 자신들의 컨텐츠에 대한 소비를 촉진시키는 기능을 제공한다. 따라서, 본 논문에서는 개인화 된 비디오 요약 서비스를 제공하기 위해, TV-Anytime에 기반한 사용자 선호도 정보를 이용하는 시스템 스킴(scheme)을 제안한다. 제안하는 방송 서비스의 유효성을 테스트하기 위해 영화 장르의 비디오에 대해서 이벤트(event)들을 세그먼트(segment)하고, 해당 선호도 정보에서 추론된 선호 이벤트 정보에 따라 비디오 요약(video skim)을 생성하고, 시청자 단말에 제공하는 실험을 수행한다.

  • PDF

Automatic Recommendation of (IP)TV programs based on A Rank Model using Collaborative Filtering (협업 필터링을 이용한 순위 정렬 모델 기반 (IP)TV 프로그램 자동 추천)

  • Kim, Eun-Hui;Pyo, Shin-Jee;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.238-252
    • /
    • 2009
  • Due to the rapid increase of available contents via the convergence of broadcasting and internet, the efficient access to personally preferred contents has become an important issue. In this paper, for recommendation scheme for TV programs using a collaborative filtering technique is studied. For recommendation of user preferred TV programs, our proposed recommendation scheme consists of offline and online computation. About offline computation, we propose reasoning implicitly each user's preference in TV programs in terms of program contents, genres and channels, and propose clustering users based on each user's preferences in terms of genres and channels by dynamic fuzzy clustering method. After an active user logs in, to recommend TV programs to the user with high accuracy, the online computation includes pulling similar users to an active user by similarity measure based on the standard preference list of active user and filtering-out of the watched TV programs of the similar users, which do not exist in EPG and ranking of the remaining TV programs by proposed rank model. Especially, in this paper, the BM (Best Match) algorithm is extended to make the recommended TV programs be ranked by taking into account user's preferences. The experimental results show that the proposed scheme with the extended BM model yields 62.1% of prediction accuracy in top five recommendations for the TV watching history of 2,441 people.

Analysis of Author Image Based on Book Recommendation from Readers (독자 추천도서 정보를 이용한 작가 이미지 분석 연구)

  • Choi, Sanghee
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.153-171
    • /
    • 2017
  • Many readers tend to read books of a specific author and to expand their reading areas according to the author. This study chose Edgar Allan Poe and analyzed the image of the author using co-recommended authors and books by other readers. The frequencies of co-occurred authors and books were investigated and the relations of authors and books were analyzed with network analysis methods. As a result, genre images of Poe, related authors, and related books are discovered. This study also suggested the methods to identify the image of a author, related author groups, and related books for libraries' reading programs and book curation.

Music information and musical propensity analysis, and music recommendation system using collaborative filtering (음악정보와 음악적 성향 분석 및 협업 필터링을 이용한 음악추천시스템)

  • Gong, Minseo;Hong, Jinju;Choi, Jaehyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.533-536
    • /
    • 2015
  • Mobile music market is growing. However, services what are applied recently are inaccurate to recommend music that a user is worth to prefer. So, this paper suggests music recommend system. This system recommend music that users prefer analyzing music information and user's musical propensity and using collaborative filtering. This system classify genre and extract factors what can be get using STFT's ZCR, Spectral roll-off, Spectral flux. So similar musics are clustered by these factors. And then, after divide mood of music's lyric, it finally recommend music automatically using collaborative filtering.

  • PDF

Analyses on Characteristics and Usage of Digital Game Viewpoint: Why do Games use Third-person Viewpoint more often than First-person Viewpoint? (디지털 게임 시점의 특징과 사용 이유 분석: 왜 게임들은 1인칭 시점보다 3인칭 시점을 더 많이 사용하는가?)

  • Ryu, YeSeul;O.Li, Hyung-Chul;Kim, ShinWoo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.75-83
    • /
    • 2015
  • The viewpoint of a digital game is a prime factor that determines user immersion, and first-person viewpoint is known to produce greatest immersion. However, most games adopt third-person viewpoint rather than first-person viewpoint. This study analyzed the reason for the preference of third-person viewpoint. First, six viewpoints were defined by combining three viewpoints (first-, third-person, omniscient viewpoints) and two distances (proximal, distal) between camera and game character. Then 100 games which received high ratings during the past 10 years were sampled, and the frequencies of viewpoint choices and genres were analyzed. Overall, the results showed that games have strong preference for third-person viewpoint. However, preferred viewpoints differed depending on genres, for example, most shooting games used first-person, proximal viewpoint. This result could have arisen because both characteristics of a game and field of view have influenced choice of viewpoint. That is, many games adopt third-person viewpoint because developers consider not only user immersion but also scene visibility.

The TV Audience's Traits, Media Usage and the Adoption of the Satellite DMB : Focus on the Understanding and Evaluation of the Local TV Audience (시청자 특성, 미디어 이용과 위성 DMB의 수용 : 지역 시청자의 인식과 평가를 중심으로)

  • Lee, Si-Hoon
    • Korean journal of communication and information
    • /
    • v.28
    • /
    • pp.141-169
    • /
    • 2005
  • This study considered the factor of the adoption of the satellite DMB. This study focus on the TV audience's demographic traits and media usage. The results are follows : 1) the elder-aged group, high-educated group and car driver group have high intention to be subscriber for the satellite DMB service. 2) the white collar group and the middle income group have high intention to be subscriber for the satellite DMB service. 3) the many media use group and the many function use of mobile phone group have high intention to be subscriber for the satellite DMB service. 4) the local TV audience like the entertainment genre in video and audio service and the information genre in data service 5) the local TV audience don't mind of the re-transmission territorial broadcasting by the satellite DMB service.

  • PDF

An Explanatory Study on Factors Affecting the Purchase of Smart Device Game Applications in the framework of Contents Characteristic Factors (콘텐츠 특성요인에 따른 스마트기기 게임 앱 구매결정에 관한 탐색적 연구)

  • Lee, Jungmann;Park, Boyoung
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.353-361
    • /
    • 2013
  • In this study, to analyze the factors affecting the purchase of smart device applications, research model based on AHP(Analytic Hierarchy Process) model was employed and derived consumers' priorities of smart device game applications in the framework of contents characteristic factors. Survey was conducted with 10 experts who are involved in the smart game industry. The empirical result showed that the most important purchasing factor was story(0.217). And fame(0.171), graphics(0.134), operability(0.111), information(0.093), difficulty(0.085), speed(0.068), characters(0.053), price(0.042), genre(0.028) are presented in order in terms of the importance. The order of consumers' preferences to smart device game application was RPG, Tycoon, action, simulation, sports/leisure, quiz/puzzle/board, etc. gamble. It suggested that under the environment of smart devices consumers could enjoy not only simple puzzle and board game but also complicated and difficult games such as RPG and tycoon game due to the development of smart devices.