Journal of the Korean BIBLIA Society for library and Information Science
/
v.31
no.1
/
pp.115-136
/
2020
It is necessary to find a genre classification by reflecting the needs of users since a subject that makes up the highest proportion of books in the school library is fictions in literature and KDC cannot accept user's need to access fiction in school libraries. This study suggested the genre classification for fictions in school libraries through surveying classification of fictions in domestic and foreign libraries, and comparing between classification systems of online/offline bookstores, KDC and DDC. For developing the genre classification system, it is to collect genre terms for fictions, to extract 14 genre headings among them, and to assign the acronym of English genre terms as classification notation. For applying the newly developed genre classification, KDC number of one middle school library was converted as the 3 methods such as combination of KDC, genre term before 800 and only genre terms. This study could contribute to suggest the genre classification of fiction to reflect user needs and to overcome the limitation of hierachical classification in KDC.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.288-291
/
2011
기존 음악 장르 분류의 경우 음악의 특징 추출 또는 기계학습을 중점적으로 연구되어왔다. 하지만 자동 분류에 필요한 장르 데이터는 음악을 제공하는 웹 사이트마다 다르고, 각 웹 사이트의 장르 분류는 해당 음악이 아닌 앨범의 장르를 표시한다. 보다 나은 자동 분류를 위해서는 일관된 장르 데이터의 제공이 필요한데, 본 논문에서는 이러한 연구의 일환으로 여러 웹사이트에서 수집한 장르 데이터에 따른 판별 성능을 분석하였다. 분석 결과 장르 분류 방법에 따라 신경망 학습 및 판별성능이 큰 차이가 발생하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.80-81
/
2016
본 논문에서는 딥 러닝을 이용한 오디오 장르 분류 기술을 제안한다. 장르는 music, speech, effect 3가지로 정의하여 분류한다. 기존의 GMM을 이용한 장르 분류 기술은 speech의 인식률에 비해 music과 effect에 대한 인식률이 낮아 각 장르에 대한 인식률의 차이를 보인다. 이러한 문제를 해결하기 위해 본 논문에서는 딥 러닝을 이용해 높은 수준의 추상화 과정을 거쳐 더 세분된 학습을 진행한다. 제안한 방법을 사용하면 미세한 차이의 특성까지 학습해 장르에 대한 인식률의 차이를 줄일 수 있으며, 각 장르에 대해 GMM을 이용한 오디오 장르 분류보다 높은 인식률을 얻을 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2007.05a
/
pp.139-141
/
2007
최근, 게임시장의 활성화가 가속화 되면서 게임을 이용하는 유저들이 매우 늘어났다. 이에 따라 게임은 하나의 문화로 정립되었다. 그러나 게임문화에 맞는 정확한 분류와 표준안이 존재하지 않아 새로운 게임의 장르 구분을 명확히 하지 못하는 문제점이 생겨났다. 본 논문에서는 기존연구의 분류법으로는 구분할 수 없는 장르의 분류를 위해 기존의 게임장르 분류법을 기반으로 체계적인 분류를 더한 게임장르 분류법을 소개한다.
모든 문화는 그 나름대로의 규칙과 분류와 표준이 존재한다. 게임문화에도 역시 그 발전속도와 규모에 부합되는, 정확한 분류와 표준안이 필요하다. 현재 여러 기관에서 게임 관련자들이 수긍할 수 있는 분류 안을 제시하고 있다. 그러나 기관별, 업체별, 그리고 게임 매체별로 게임 장르 분류에 대한 견해가 조금씩 차이를 보인다. 이에 본 논문에서는 대표적인 게임 장르를 살펴보고, 게임 장르 분류 방안을 제시하고자 한다.
A genre-based classification means classifying documents by the purpose for which they were written, not by the semantics or subject areas. Most genre classifying methods in the past were based on the existing documents categorization algorithms and ineffective for feature selections, resulting in low quality classification results. In this research, we propose a new method for automatic classification of digital documents by genre. The genre classifier we developed uses the deviation statistic between the genre-revealing term frequencies and between the subject-revealing term frequencies within a genre. We collected Web documents to evaluate the proposed genre classification method. The experimental results show that the proposed method outperforms a direct application of a kai-square feature selection and bayesian classifier often used for subject classification by proving an excellent accuracy of about 30 percent.
This paper proposes a novel spectral audio feature, spectral contrast MFCC (SCMFCC), and studies its performance on the musical genre classification. For a successful musical genre classifier, extracting features that allow direct access to the relevant genre-specific information is crucial. In this regard, the features based on the spectral contrast, which represents the relative distribution of the harmonic and non-harmonic components, have received increased attention. The proposed SCMFCC feature utilizes the spectral contrst on the mel-frequency cepstrum and thus conforms the conventional MFCC in a way more relevant for musical genre classification. By performing classification test on the widely used music DB, we compare the performance of the proposed feature with that of the previous ones.
Musical genre is indispensible in constructing music information retrieval system, such as music search and classification. In general, the spectral characteristics of a music signal are obtained based on a subband decomposition to represent the relative distribution of the harmonic and the non-harmonic components. In this paper, we investigate the subband decomposition parameters in extracting features, which improves musical genre classification accuracy. In addition, the linear projection methods are studied to reduce the resulting feature dimension. Experiments on the widely used music datasets confirmed that the subband decomposition finer than the widely-adopted octave scale is conducive in improving genre-classification accuracy and showed that the feature-dimension reduction is effective reducing a classifier's computational complexity.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.211-214
/
2008
일부 음악 장르분류에 관한 기존 연구에서는 특징 추출을 위한 구간 선택 시 사람이 직접 음악의 주요 구간을 지정하는 방법을 사용하였다. 이러한 방법은 분류 성능이 좋은 반면 수작업으로 인한 부담으로 새롭게 등록되는 음악들에 대해 지속적으로 적용하기가 곤란하다. 이러한 이유로 최근 음악 장르 분류와 관련된 연구에서는 자동으로 추출구간을 선정하는 방법을 사용하고 있는데 이러한 연구의 대부분이 고정된 구간 (예, 30초 이후의 30초 구간)에서 특징을 추출하는 관계로 분류의 정확도가 떨어지는 문제점을 갖고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 음악 전체 구간에 대하여 반복구간을 파악하고, 그 중 음악을 대표할 수 있는 단일 대표구간을 선정한 후, 대표구간으로 부터 특징을 추출하여 장르 분류 시스템에 적용하는 방법을 제안하였다. 실험 결과, 기존 고정구간을 사용한 방법에 비해 괄목할 만한 성능 향상을 얻을 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.330-335
/
2006
본 논문에서는 neural network을 이용한 이미지 장르(유형) 분류 시스템을 소개한다. 이 논문에서 제안된 시스템은 이미지를 예술(art), 사진(photo), 만화(cartoon) 이미지라는 세 가지 장르(유형) 중 하나로 분류한다. 이미지의 특성은 표준 MPEG-7 visual descriptor를 사용하여 추출된 후, neural networks를 이용하여 학습된다. 시뮬레이션 결과는 제안된 시스템이 80% 이상의 이미지들을 정확한 장르(유형)로 분류하는 것을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.