• Title/Summary/Keyword: 장르 분류

Search Result 208, Processing Time 0.026 seconds

A Study on Genre Classification for Fictions in School Libraries (학교도서관을 위한 소설장서의 장르 분류 방안에 관한 연구)

  • Park, Eunhee;Lee, Mihwa
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.31 no.1
    • /
    • pp.115-136
    • /
    • 2020
  • It is necessary to find a genre classification by reflecting the needs of users since a subject that makes up the highest proportion of books in the school library is fictions in literature and KDC cannot accept user's need to access fiction in school libraries. This study suggested the genre classification for fictions in school libraries through surveying classification of fictions in domestic and foreign libraries, and comparing between classification systems of online/offline bookstores, KDC and DDC. For developing the genre classification system, it is to collect genre terms for fictions, to extract 14 genre headings among them, and to assign the acronym of English genre terms as classification notation. For applying the newly developed genre classification, KDC number of one middle school library was converted as the 3 methods such as combination of KDC, genre term before 800 and only genre terms. This study could contribute to suggest the genre classification of fiction to reflect user needs and to overcome the limitation of hierachical classification in KDC.

Performance Analysis of Automatic Music Genre Classification with Different Genre Data (음악 장르 분류법에 따른 자동판별 성능분석)

  • Song, Min-Kyun;Moon, Chang-Bae;Kim, Hyun-Soo;Kim, Byeong-Man
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.288-291
    • /
    • 2011
  • 기존 음악 장르 분류의 경우 음악의 특징 추출 또는 기계학습을 중점적으로 연구되어왔다. 하지만 자동 분류에 필요한 장르 데이터는 음악을 제공하는 웹 사이트마다 다르고, 각 웹 사이트의 장르 분류는 해당 음악이 아닌 앨범의 장르를 표시한다. 보다 나은 자동 분류를 위해서는 일관된 장르 데이터의 제공이 필요한데, 본 논문에서는 이러한 연구의 일환으로 여러 웹사이트에서 수집한 장르 데이터에 따른 판별 성능을 분석하였다. 분석 결과 장르 분류 방법에 따라 신경망 학습 및 판별성능이 큰 차이가 발생하였다.

Audio genre classification using deep learning (딥 러닝을 이용한 오디오 장르 분류)

  • Shin, Seong-Hyeon;Jang, Woo-Jin;Yun, Ho-won;Park, Ho-Chong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.80-81
    • /
    • 2016
  • 본 논문에서는 딥 러닝을 이용한 오디오 장르 분류 기술을 제안한다. 장르는 music, speech, effect 3가지로 정의하여 분류한다. 기존의 GMM을 이용한 장르 분류 기술은 speech의 인식률에 비해 music과 effect에 대한 인식률이 낮아 각 장르에 대한 인식률의 차이를 보인다. 이러한 문제를 해결하기 위해 본 논문에서는 딥 러닝을 이용해 높은 수준의 추상화 과정을 거쳐 더 세분된 학습을 진행한다. 제안한 방법을 사용하면 미세한 차이의 특성까지 학습해 장르에 대한 인식률의 차이를 줄일 수 있으며, 각 장르에 대해 GMM을 이용한 오디오 장르 분류보다 높은 인식률을 얻을 수 있다.

  • PDF

A Classification Method for Environment-based Games (게임 환경 특성에 기반 한 분류방안)

  • Hwang, Shin-Hee;Park, Young-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.139-141
    • /
    • 2007
  • 최근, 게임시장의 활성화가 가속화 되면서 게임을 이용하는 유저들이 매우 늘어났다. 이에 따라 게임은 하나의 문화로 정립되었다. 그러나 게임문화에 맞는 정확한 분류와 표준안이 존재하지 않아 새로운 게임의 장르 구분을 명확히 하지 못하는 문제점이 생겨났다. 본 논문에서는 기존연구의 분류법으로는 구분할 수 없는 장르의 분류를 위해 기존의 게임장르 분류법을 기반으로 체계적인 분류를 더한 게임장르 분류법을 소개한다.

A Motion of Game Genre Classification (게임장르 분류를 위한 제안)

  • 이은아;박용범
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.05a
    • /
    • pp.109-111
    • /
    • 2002
  • 모든 문화는 그 나름대로의 규칙과 분류와 표준이 존재한다. 게임문화에도 역시 그 발전속도와 규모에 부합되는, 정확한 분류와 표준안이 필요하다. 현재 여러 기관에서 게임 관련자들이 수긍할 수 있는 분류 안을 제시하고 있다. 그러나 기관별, 업체별, 그리고 게임 매체별로 게임 장르 분류에 대한 견해가 조금씩 차이를 보인다. 이에 본 논문에서는 대표적인 게임 장르를 살펴보고, 게임 장르 분류 방안을 제시하고자 한다.

A Genre-based Classification of Digital Documents by using Deviation Statistic of Genre-revealing Term and Subject-revealing Term (장르와 주제 범주간 용어 편차정보를 이용한 디지털 문서의 장르기반 분류)

  • 이용배;맹성현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1062-1071
    • /
    • 2003
  • A genre-based classification means classifying documents by the purpose for which they were written, not by the semantics or subject areas. Most genre classifying methods in the past were based on the existing documents categorization algorithms and ineffective for feature selections, resulting in low quality classification results. In this research, we propose a new method for automatic classification of digital documents by genre. The genre classifier we developed uses the deviation statistic between the genre-revealing term frequencies and between the subject-revealing term frequencies within a genre. We collected Web documents to evaluate the proposed genre classification method. The experimental results show that the proposed method outperforms a direct application of a kai-square feature selection and bayesian classifier often used for subject classification by proving an excellent accuracy of about 30 percent.

Study on the Performance of Spectral Contrast MFCC for Musical Genre Classification (스펙트럼 대비 MFCC 특징의 음악 장르 분류 성능 분석)

  • Seo, Jin-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.265-269
    • /
    • 2010
  • This paper proposes a novel spectral audio feature, spectral contrast MFCC (SCMFCC), and studies its performance on the musical genre classification. For a successful musical genre classifier, extracting features that allow direct access to the relevant genre-specific information is crucial. In this regard, the features based on the spectral contrast, which represents the relative distribution of the harmonic and non-harmonic components, have received increased attention. The proposed SCMFCC feature utilizes the spectral contrst on the mel-frequency cepstrum and thus conforms the conventional MFCC in a way more relevant for musical genre classification. By performing classification test on the widely used music DB, we compare the performance of the proposed feature with that of the previous ones.

An investigation of subband decomposition and feature-dimension reduction for musical genre classification (음악 장르 분류를 위한 부밴드 분해와 특징 차수 축소에 관한 연구)

  • Seo, Jin Soo;Kim, Junghyun;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.144-150
    • /
    • 2017
  • Musical genre is indispensible in constructing music information retrieval system, such as music search and classification. In general, the spectral characteristics of a music signal are obtained based on a subband decomposition to represent the relative distribution of the harmonic and the non-harmonic components. In this paper, we investigate the subband decomposition parameters in extracting features, which improves musical genre classification accuracy. In addition, the linear projection methods are studied to reduce the resulting feature dimension. Experiments on the widely used music datasets confirmed that the subband decomposition finer than the widely-adopted octave scale is conducive in improving genre-classification accuracy and showed that the feature-dimension reduction is effective reducing a classifier's computational complexity.

The Content-based Genre Classification using Representative Part of Music (음악의 대표구간을 이용한 내용기반 장르 판별에 관한 연구)

  • Lee, Jong-In;Kim, Byeong-Man
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.211-214
    • /
    • 2008
  • 일부 음악 장르분류에 관한 기존 연구에서는 특징 추출을 위한 구간 선택 시 사람이 직접 음악의 주요 구간을 지정하는 방법을 사용하였다. 이러한 방법은 분류 성능이 좋은 반면 수작업으로 인한 부담으로 새롭게 등록되는 음악들에 대해 지속적으로 적용하기가 곤란하다. 이러한 이유로 최근 음악 장르 분류와 관련된 연구에서는 자동으로 추출구간을 선정하는 방법을 사용하고 있는데 이러한 연구의 대부분이 고정된 구간 (예, 30초 이후의 30초 구간)에서 특징을 추출하는 관계로 분류의 정확도가 떨어지는 문제점을 갖고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 음악 전체 구간에 대하여 반복구간을 파악하고, 그 중 음악을 대표할 수 있는 단일 대표구간을 선정한 후, 대표구간으로 부터 특징을 추출하여 장르 분류 시스템에 적용하는 방법을 제안하였다. 실험 결과, 기존 고정구간을 사용한 방법에 비해 괄목할 만한 성능 향상을 얻을 수 있었다.

  • PDF

Neural Network Based Image Genre Classification (Neural Network을 이용한 이미지 장르 분류 시스템)

  • Ahn, Jae-Hoon;Lee, Han-Ku;Ju, Hyun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.330-335
    • /
    • 2006
  • 본 논문에서는 neural network을 이용한 이미지 장르(유형) 분류 시스템을 소개한다. 이 논문에서 제안된 시스템은 이미지를 예술(art), 사진(photo), 만화(cartoon) 이미지라는 세 가지 장르(유형) 중 하나로 분류한다. 이미지의 특성은 표준 MPEG-7 visual descriptor를 사용하여 추출된 후, neural networks를 이용하여 학습된다. 시뮬레이션 결과는 제안된 시스템이 80% 이상의 이미지들을 정확한 장르(유형)로 분류하는 것을 보여준다.

  • PDF