• Title/Summary/Keyword: 장단기 메모리

Search Result 52, Processing Time 0.02 seconds

Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network (전이학습과 딥러닝 네트워크를 활용한 고해상도 위성영상의 변화탐지)

  • Song, Ah Ram;Choi, Jae Wan;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2019
  • As the number of available satellites increases and technology advances, image information outputs are becoming increasingly diverse and a large amount of data is accumulating. In this study, we propose a change detection method for high-resolution satellite images that uses transfer learning and a deep learning network to overcome the limit caused by insufficient training data via the use of pre-trained information. The deep learning network used in this study comprises convolutional layers to extract the spatial and spectral information and convolutional long-short term memory layers to analyze the time series information. To use the learned information, the two initial convolutional layers of the change detection network are designed to use learned values from 40,000 patches of the ISPRS (International Society for Photogrammertry and Remote Sensing) dataset as initial values. In addition, 2D (2-Dimensional) and 3D (3-dimensional) kernels were used to find the optimized structure for the high-resolution satellite images. The experimental results for the KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) satellite images show that this change detection method can effectively extract changed/unchanged pixels but is less sensitive to changes due to shadow and relief displacements. In addition, the change detection accuracy of two sites was improved by using 3D kernels. This is because a 3D kernel can consider not only the spatial information but also the spectral information. This study indicates that we can effectively detect changes in high-resolution satellite images using the constructed image information and deep learning network. In future work, a pre-trained change detection network will be applied to newly obtained images to extend the scope of the application.

Development of Collision Safety Control Logic using ADAS information and Machine Learning (머신러닝/ADAS 정보 활용 충돌안전 제어로직 개발)

  • Park, Hyungwook;Song, Soo Sung;Shin, Jang Ho;Han, Kwang Chul;Choi, Se Kyung;Ha, Heonseok;Yoon, Sungroh
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2022
  • In the automotive industry, the development of automobiles to meet safety requirements is becoming increasingly complex. This is because quality evaluation agencies in each country are continually strengthening new safety standards for vehicles. Among these various requirements, collision safety must be satisfied by controlling airbags, seat belts, etc., and can be defined as post-crash safety. Apart from this safety system, the Advanced Driver Assistance Systems (ADAS) use advanced detection sensors, GPS, communication, and video equipment to detect the hazard and notify driver before the collision. However, research to improve passenger safety in case of an accident by using the sensor of active safety represented by ADAS in the existing passive safety is limited to the level that utilizes the sudden braking level of the FCA (Forward Collision-avoidance Assist) system. Therefore, this study aims to develop logic that can improve passenger protection in case of an accident by using ADAS information and driving information secured before a collision. The proposed logic was constructed based on LSTM deep learning techniques and trained using crash test data.

An Approach Using LSTM Model to Forecasting Customer Congestion Based on Indoor Human Tracking (실내 사람 위치 추적 기반 LSTM 모델을 이용한 고객 혼잡 예측 연구)

  • Hee-ju Chae;Kyeong-heon Kwak;Da-yeon Lee;Eunkyung Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • In this detailed and comprehensive study, our primary focus has been placed on accurately gauging the number of visitors and their real-time locations in commercial spaces. Particularly, in a real cafe, using security cameras, we have developed a system that can offer live updates on available seating and predict future congestion levels. By employing YOLO, a real-time object detection and tracking algorithm, the number of visitors and their respective locations in real-time are also monitored. This information is then used to update a cafe's indoor map, thereby enabling users to easily identify available seating. Moreover, we developed a model that predicts the congestion of a cafe in real time. The sophisticated model, designed to learn visitor count and movement patterns over diverse time intervals, is based on Long Short Term Memory (LSTM) to address the vanishing gradient problem and Sequence-to-Sequence (Seq2Seq) for processing data with temporal relationships. This innovative system has the potential to significantly improve cafe management efficiency and customer satisfaction by delivering reliable predictions of cafe congestion to all users. Our groundbreaking research not only demonstrates the effectiveness and utility of indoor location tracking technology implemented through security cameras but also proposes potential applications in other commercial spaces.

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.

A Study on the Effect of Macroeconomic Variables on Apartment Rental Housing Prices by Region and the Establishment of Prediction Model (거시경제변수가 지역 별 아파트 전세가격에 미치는 영향 및 예측모델 구축에 관한 연구)

  • Kim, Eun-Mi
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.211-231
    • /
    • 2022
  • This study attempted to identify the effects of macroeconomic variables such as the All Industry Production Index, Consumer Price Index, CD Interest Rate, and KOSPI on apartment lease prices divided into nationwide, Seoul, metropolitan, and region, and to present a methodological prediction model of apartment lease prices by region using Long Short Term Memory (LSTM). According to VAR analysis results, the nationwide apartment lease price index and consumer price index in Lag1 and 2 had a significant effect on the nationwide apartment lease price, and likewise, the Seoul apartment lease price index, the consumer price index, and the CD interest rate in Lag1 and 2 affect the apartment lease price in Seoul. In addition, it was confirmed that the wide-area apartment jeonse price index and the consumer price index had a significant effect on Lag1, and the local apartment jeonse price index and the consumer price index had a significant effect on Lag1. As a result of the establishment of the LSTM prediction model, the predictive power was the highest with RMSE 0.008, MAE 0.006, and R-Suared values of 0.999 for the local apartment lease price prediction model. In the future, it is expected that more meaningful results can be obtained by applying an advanced model based on deep learning, including major policy variables

Earthquake events classification using convolutional recurrent neural network (합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법)

  • Ku, Bonhwa;Kim, Gwantae;Jang, Su;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.592-599
    • /
    • 2020
  • This paper proposes a Convolutional Recurrent Neural Net (CRNN) structure that can simultaneously reflect both static and dynamic characteristics of seismic waveforms for various earthquake events classification. Addressing various earthquake events, including not only micro-earthquakes and artificial-earthquakes but also macro-earthquakes, requires both effective feature extraction and a classifier that can discriminate seismic waveform under noisy environment. First, we extract the static characteristics of seismic waveform through an attention-based convolution layer. Then, the extracted feature-map is sequentially injected as input to a multi-input single-output Long Short-Term Memory (LSTM) network structure to extract the dynamic characteristic for various seismic event classifications. Subsequently, we perform earthquake events classification through two fully connected layers and softmax function. Representative experimental results using domestic and foreign earthquake database show that the proposed model provides an effective structure for various earthquake events classification.

Analysis and Recognition of Depressive Emotion through NLP and Machine Learning (자연어처리와 기계학습을 통한 우울 감정 분석과 인식)

  • Kim, Kyuri;Moon, Jihyun;Oh, Uran
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.449-454
    • /
    • 2020
  • This paper proposes a machine learning-based emotion analysis system that detects a user's depression through their SNS posts. We first made a list of keywords related to depression in Korean, then used these to create a training data by crawling Twitter data - 1,297 positive and 1,032 negative tweets in total. Lastly, to identify the best machine learning model for text-based depression detection purposes, we compared RNN, LSTM, and GRU in terms of performance. Our experiment results verified that the GRU model had the accuracy of 92.2%, which is 2~4% higher than other models. We expect that the finding of this paper can be used to prevent depression by analyzing the users' SNS posts.

Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models (1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발)

  • Lee, Joonhak;Lee, Haneul;Kang, Narae;Hwang, Seokhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.311-323
    • /
    • 2023
  • In order to reduce disaster damage by localized heavy rains, floods, and urban inundation, it is important to know in advance whether natural disasters occur. Currently, heavy rain watch and heavy rain warning by the criteria of the Korea Meteorological Administration are being issued in Korea. However, since this one criterion is applied to the whole country, we can not clearly recognize heavy rain damage for a specific region in advance. Therefore, in this paper, we tried to reset the current criteria for a special weather report which considers the regional characteristics and to predict the damage caused by rainfall after 1 hour. The study area was selected as Gyeonggi-province, where has more frequent heavy rain damage than other regions. Then, the rainfall inducing disaster or hazard-triggering rainfall was set by utilizing hourly rainfall and heavy rain damage data, considering the local characteristics. The heavy rain damage prediction model was developed by a decision tree model and a random forest model, which are machine learning technique and by rainfall inducing disaster and rainfall data. In addition, long short-term memory and deep neural network models were used for predicting rainfall after 1 hour. The predicted rainfall by a developed prediction model was applied to the trained classification model and we predicted whether the rain damage after 1 hour will be occurred or not and we called this as 1ST-Model. The 1ST-Model can be used for preventing and preparing heavy rain disaster and it is judged to be of great contribution in reducing damage caused by heavy rain.

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

Chart-based Stock Price Prediction by Combing Variation Autoencoder and Attention Mechanisms (변이형 오토인코더와 어텐션 메커니즘을 결합한 차트기반 주가 예측)

  • Sanghyun Bae;Byounggu Choi
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.23-43
    • /
    • 2021
  • Recently, many studies have been conducted to increase the accuracy of stock price prediction by analyzing candlestick charts using artificial intelligence techniques. However, these studies failed to consider the time-series characteristics of candlestick charts and to take into account the emotional state of market participants in data learning for stock price prediction. In order to overcome these limitations, this study produced input data by combining volatility index and candlestick charts to consider the emotional state of market participants, and used the data as input for a new method proposed on the basis of combining variantion autoencoder (VAE) and attention mechanisms for considering the time-series characteristics of candlestick chart. Fifty firms were randomly selected from the S&P 500 index and their stock prices were predicted to evaluate the performance of the method compared with existing ones such as convolutional neural network (CNN) or long-short term memory (LSTM). The results indicated the method proposed in this study showed superior performance compared to the existing ones. This study implied that the accuracy of stock price prediction could be improved by considering the emotional state of market participants and the time-series characteristics of the candlestick chart.