• Title/Summary/Keyword: 장단기 기억 신경망

Search Result 28, Processing Time 0.039 seconds

CNN-LSTM based Autonomous Driving Technology (CNN-LSTM 기반의 자율주행 기술)

  • Ga-Eun Park;Chi Un Hwang;Lim Se Ryung;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1259-1268
    • /
    • 2023
  • This study proposes a throttle and steering control technology using visual sensors based on deep learning's convolutional and recurrent neural networks. It collects camera image and control value data while driving a training track in clockwise and counterclockwise directions, and generates a model to predict throttle and steering through data sampling and preprocessing for efficient learning. Afterward, the model was validated on a test track in a different environment that was not used for training to find the optimal model and compare it with a CNN (Convolutional Neural Network). As a result, we found that the proposed deep learning model has excellent performance.

Prediction of Music Generation on Time Series Using Bi-LSTM Model (Bi-LSTM 모델을 이용한 음악 생성 시계열 예측)

  • Kwangjin, Kim;Chilwoo, Lee
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.65-75
    • /
    • 2022
  • Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.

Polyphonic sound event detection using multi-channel audio features and gated recurrent neural networks (다채널 오디오 특징값 및 게이트형 순환 신경망을 사용한 다성 사운드 이벤트 검출)

  • Ko, Sang-Sun;Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.267-272
    • /
    • 2017
  • In this paper, we propose an effective method of applying multichannel-audio feature values to GRNNs (Gated Recurrent Neural Networks) in polyphonic sound event detection. Real life sounds are often overlapped with each other, so that it is difficult to distinguish them by using a mono-channel audio features. In the proposed method, we tried to improve the performance of polyphonic sound event detection by using multi-channel audio features. In addition, we also tried to improve the performance of polyphonic sound event detection by applying a gated recurrent neural network which is simpler than LSTM (Long Short Term Memory), which shows the highest performance among the current recurrent neural networks. The experimental results show that the proposed method achieves better sound event detection performance than other existing methods.

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.

Arrhythmia Classification using GAN-based Over-Sampling Method and Combination Model of CNN-BLSTM (GAN 오버샘플링 기법과 CNN-BLSTM 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1490-1499
    • /
    • 2022
  • Arrhythmia is a condition in which the heart has an irregular rhythm or abnormal heart rate, early diagnosis and management is very important because it can cause stroke, cardiac arrest, or even death. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-BLSTM. For this purpose, the QRS features are detected from noise removed signal through pre-processing and a single bit segment was extracted. In this case, the GAN oversampling technique is applied to solve the data imbalance problem. It consisted of CNN layers to extract the patterns of the arrhythmia precisely, used them as the input of the BLSTM. The weights were learned through deep learning and the learning model was evaluated by the validation data. To evaluate the performance of the proposed method, classification accuracy, precision, recall, and F1-score were compared by using the MIT-BIH arrhythmia database. The achieved scores indicate 99.30%, 98.70%, 97.50%, 98.06% in terms of the accuracy, precision, recall, F1 score, respectively.

Short-Term Precipitation Forecasting based on Deep Neural Network with Synthetic Weather Radar Data (기상레이더 강수 합성데이터를 활용한 심층신경망 기반 초단기 강수예측 기술 연구)

  • An, Sojung;Choi, Youn;Son, MyoungJae;Kim, Kwang-Ho;Jung, Sung-Hwa;Park, Young-Youn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.43-45
    • /
    • 2021
  • The short-term quantitative precipitation prediction (QPF) system is important socially and economically to prevent damage from severe weather. Recently, many studies for short-term QPF model applying the Deep Neural Network (DNN) has been conducted. These studies require the sophisticated pre-processing because the mistreatment of various and vast meteorological data sets leads to lower performance of QPF. Especially, for more accurate prediction of the non-linear trends in precipitation, the dataset needs to be carefully handled based on the physical and dynamical understands the data. Thereby, this paper proposes the following approaches: i) refining and combining major factors (weather radar, terrain, air temperature, and so on) related to precipitation development in order to construct training data for pattern analysis of precipitation; ii) producing predicted precipitation fields based on Convolutional with ConvLSTM. The proposed algorithm was evaluated by rainfall events in 2020. It is outperformed in the magnitude and strength of precipitation, and clearly predicted non-linear pattern of precipitation. The algorithm can be useful as a forecasting tool for preventing severe weather.

  • PDF

Comparison of the effectiveness of various neural network models applied to wind turbine condition diagnosis (풍력터빈 상태진단에 적용된 다양한 신경망 모델의 유효성 비교)

  • Manh-Tuan Ngo;Changhyun Kim;Minh-Chau Dinh;Minwon Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.77-87
    • /
    • 2023
  • Wind turbines playing a critical role in renewable energy generation, accurately assessing their operational status is crucial for maximizing energy production and minimizing downtime. This study conducts a comparative analysis of different neural network models for wind turbine condition diagnosis, evaluating their effectiveness using a dataset containing sensor measurements and historical turbine data. The study utilized supervisory control and data acquisition data, collected from 2 MW doubly-fed induction generator-based wind turbine system (Model HQ2000), for the analysis. Various neural network models such as artificial neural network, long short-term memory, and recurrent neural network were built, considering factors like activation function and hidden layers. Symmetric mean absolute percentage error were used to evaluate the performance of the models. Based on the evaluation, conclusions were drawn regarding the relative effectiveness of the neural network models for wind turbine condition diagnosis. The research results guide model selection for wind turbine condition diagnosis, contributing to improved reliability and efficiency through advanced neural network-based techniques and identifying future research directions for further advancements.

Sentence generation model with neural attention (Neural Attention을 반영한 문장 생성 모델)

  • Lee, Seihee;Lee, Jee-Hyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.17-18
    • /
    • 2017
  • 자연어 처리 분야에서 대화문 생성, 질의응답 등과 같은 문장생성과 관련된 연구가 꾸준히 진행되고 있다. 본 논문에서는 기존 순환신경망 모델에 Neural Attention을 추가하여 주제 정보를 어느 정도 포함시킬지 결정한 뒤 다음 문장을 생성할 때 사용하는 모델을 제안한다. 이는 기존 문장과 다음 문장의 확률 정보를 사용할 뿐만 아니라 주제 정보를 추가하여 문맥적인 의미를 넣을 수 있기 때문에, 더욱 연관성 있는 문장을 생성할 수 있게 도와준다. 이 모델은 적절한 다음 문장을 생성할 뿐만 아니라 추가적으로 어떤 단어가 다음 문장을 생성함에 있어 주제문장에 더 민감하게 반응하는지 확인할 수 있다.

  • PDF

LSTM Hyperparameter Optimization for an EEG-Based Efficient Emotion Classification in BCI (BCI에서 EEG 기반 효율적인 감정 분류를 위한 LSTM 하이퍼파라미터 최적화)

  • Aliyu, Ibrahim;Mahmood, Raja Majid;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1171-1180
    • /
    • 2019
  • Emotion is a psycho-physiological process that plays an important role in human interactions. Affective computing is centered on the development of human-aware artificial intelligence that can understand and regulate emotions. This field of study is also critical as mental diseases such as depression, autism, attention deficit hyperactivity disorder, and game addiction are associated with emotion. Despite the efforts in emotions recognition and emotion detection from nonstationary, detecting emotions from abnormal EEG signals requires sophisticated learning algorithms because they require a high level of abstraction. In this paper, we investigated LSTM hyperparameters for an optimal emotion EEG classification. Results of several experiments are hereby presented. From the results, optimal LSTM hyperparameter configuration was achieved.