• 제목/요약/키워드: 장기체공

검색결과 70건 처리시간 0.02초

장기 체공 태양광 드론의 비행시간 연장에 관한 실험적 검증 (Experimental Verification on the Extending Flight Time of Solar Paper for Drone using Battery for Electric Vehicles)

  • 이우람
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.229-235
    • /
    • 2023
  • 최근 드론에 탑재량 증가에 따라 비행시간 연장에 대한 수요 및 농업용을 활용하는 방안이 필요하다. 현재 태양 전지를 이용한 드론의 배터리 기술에 의해 탑재 무게 증가 및 비행시간 연장에 관한 연구가 수행되고 있다. 또한, 지속적인 비행을 위해 배터리를 충전하거나 교체해야 하는 번거로움을 줄이기 위한 대안으로 태양 전지를 이용한 드론이 실용적인 해결 방안으로 제시되고 있다. 이에 본 연구에서는 드론의 주동력 시스템을 최적화하기 위해 기존 배터리와 태양 전지를 부착하여, 태양광 드론을 실험적으로 분석 및 검증하였다. 그 결과 태양광 드론은 약 2-3% 정도의 비행시간을 연장하였다. 제안된 태양광 드론은 비행 시 평균 55W의 에너지 소모를 하며, 태양 전지의 최대 충전 시 약 25W의 에너지를 공급받았다. 이를 통해 장기 체공을 위한 비행시간 연장을 실험적으로 검증하였다.

고고도 장기체공무인기 경량 주익 스파 설계 (Light Wing Spar Design for High Altitude Long Endurance UAV)

  • 신정우;박상욱;이무형;김태욱
    • 한국항공운항학회지
    • /
    • 제22권2호
    • /
    • pp.27-33
    • /
    • 2014
  • There are several methods to improve the flight efficiency of HALE(High Altitude Long Endurance) UAV(Unmaned Aerial Vehicle). Airframe structural point of view, weight reduction of the airframe structure is the most important method to improve the flight efficiency. In order to reduce the weight of airframe structures, new concepts which are different from traditional airframe structure design such as the mylar wing skin should be introduced. The spar is the most important component in a mylar skin wing structure, so the spar weight reduction is the key point for reduction of the wing structural weight. In this study, design trade-off study for the front spar of the HALE UAV wing is conducted in order to reduce the weight. Design and analysis procedure of high aspect ratio wing spar are introduced. Several front spar structures are designed and trade-off study regarding the weight and strength for the each spar are performed. Spar design configurations are verified by the static strength test. Finally, optimal front spar design is decided and applied to the HALE UAV wing design.

태양 일조량 변화에 따른 HALE UAV의 동력 수집/분배/제어 특성 연구 (A Research for Energy Harvest/Distribution/Control of HALE UAV based on the Solar Energy)

  • 남윤광;박토순
    • 한국추진공학회지
    • /
    • 제19권4호
    • /
    • pp.77-84
    • /
    • 2015
  • 최근 친환경적인 항공 추진시스템에 대한 요구가 확대되고 있는 가운데 여러 에너지원을 조합하여 장기 체공하는 무인기용 복합추진시스템을 개발하기 위한 다양한 시도가 이루어지고 있다. 본 연구에서는 주어진 임무형상에 따른 비행체의 에너지 균형 매커니즘을 최적화하기 위하여 태양전지로부터 수집 가능한 에너지와 비행체의 요구에너지 그리고 재생연료전지 구동을 통해 순환에 필요한 동력분배 관리시스템을 분석하였다.

태양에너지 기반 장기체공 무인기 주요 치수 결정 방법론 (A Sizing Method for Solar Power Long Endurance UAVs)

  • 이주호;이창관;임세실;김금성;한재흥
    • 한국항공우주학회지
    • /
    • 제38권8호
    • /
    • pp.758-766
    • /
    • 2010
  • 태양에너지 기반 무인기는 공급되는 전력량이 날개 면적에 영향을 받으므로 형상설계와 비행에 필요한 전력량이 동시에 고려되어야 하며 따라서 설계 과정이 복잡해진다. 복잡한 설계과정에 앞서 주어진 임무 요구를 만족시키는 태양에너지 기반의 무인기 제작 가능 여부와 제작 가능하다면 무인기의 대략적인 주요 치수를 구하는 방법론이 있다면 이를 활용함으로서 불필요한 설계 시행 오차 없이 무인기를 설계 할 수 있을 것이다. 본 논문에서는 주요 치수 결정 방법론으로 날개 면적을 가정하고 날개 면적과 임무 요구로부터 에어포일(양력계수, 항력계수), 무게를 결정한 후 필요 전력과 태양 전지 효율로부터 다시 날개 면적을 계산하는 것으로 제시하였는데, 이는 날개에서 생산되는 전력, 양력 및 항력이 날개 면적에 직접적으로 영향 받기 때문이다. 앞서 가정된 날개 면적 값과 계산된 날개 면적 값의 오차가 충분히 작아질 때 까지 반복적으로 가정된 날개 면적 값을 바꾸어가며 계산을 수행한다. 본 방법론을 실제 제작된 태양에너지 기반 무인기의 값을 이용해 검증하고, 태양에너지 기반 고고도 장기체공 무인기의 주요 치수를 결정해보았다.

3.0m급 저고도 장기체공 태양광 무인기 시스템 연구 (A Study on 3.0m Low-Altitude Long-Endurance Solar Powered UAV System)

  • 정재백;김태림;김도영;문석민;배재성;박상혁
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.10-17
    • /
    • 2023
  • 본 논문은 한국항공대학교에서 연구 및 개발한 태양광 무인기에 관한 것으로, 주익 4.2 m 장기체공 태양광 무인항공기 KAU-SPUAV-2019에 대한 연구를 기반으로 하여 임무 비행을 위해 개발한 주익 3.0 m 태양광 무인항공기 KAU-SPUAV-2020의 시스템 설계에 관하여 기술하였다. 기체의 경량화를 위하여 동체에 복합재료를 적용하였고, 태양광 충전 시스템을 적용하였다. 임무 수행 활용성을 위하여 비상시 긴급하게 착륙하기 유리하도록 Deep Stall Landing이 가능하도록 제작하였으며, 강제 실속 착륙 시 항공기에 가해지는 충격을 흡수하기 위한 에어백 모듈을 장착하였다. 개발된 3.0 m 태양광 무인항공기의 비행 성능 및 임무 수행 능력은 비행 실험을 통해 그 수행 능력을 검증하였으며, 147 km에 달하는 제주도 해안선을 3 시간 50 분 만에 비행하는 것에 성공함으로 태양광 무인항공기가 다양한 분야에서 촬영, 모니터링 임무에 활용 가능함을 확인하였다.

무인 항공기용 연료 전지 동력 시스템 개발 (Development of Fuel Cell Power System for Unmanned Aerial Vehicle)

  • 김태규;심현철;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.87-90
    • /
    • 2007
  • 장기 체공 무인 항공기를 위한 연료 전지 동력 시스템을 개발하였다. 기존의 고압 수소 저장 방식의 문제점을 해결하기 위해 높은 에너지 밀도를 갖는 액상의 화학 수소화물을 연료로 사용하였다. 수소화물을 전환하여 수소를 발생하는 연료 공급 장치는 촉매 반응기, 펌프, 연료 카트리지, 분리기, 제어기로 구성되어 있으며, 전력을 발생하기 위한 연료전지 스택과 함께 연료 전지 동력 시스템을 무인 항공기에 탑재하였다. 연료 전지 동력 시스템을 무인 항공기에 적용하기 위한 성능 검증을 수행하였다.

  • PDF

장기체공 무인기용 태양전지-연료전지를 활용한 동력원 구성 및 지상시험 (Configuration and Ground Tests of Solar Cell and Fuel Cell Powered System for Long Endurance UAV)

  • 박병섭;김현탁;백승관;권세진
    • 한국추진공학회지
    • /
    • 제19권4호
    • /
    • pp.94-101
    • /
    • 2015
  • 장기체공 무인기용 동력원으로 활용될 태양전지-연료전지 복합 동력원 통합 전 단계로 태양전지와 연료전지 개별 시스템에 대한 구성과 평가를 수행하였다. 태양전지 시스템은 Sunpower사의 C60 태양 전지를 활용한 모듈, 상용 태양광 MPPT 제어기, 그리고 리튬-폴리머 배터리를 이용하여 구성하고 평가하였다. 연료전지 시스템 운용을 위하여 $NaBH_4$ 가수분해를 이용한 수소공급장치의 재시동 특성을 확인하였다. 태양전지 시스템에 속한 배터리의 성능이 평균 -2.9 V/hour임을 확인하였다. 수소공급장치의 재시동 특성이 운용임무 조건에서 안정적인 성능이 나타남을 확인하였다. 본 연구를 통하여 제시된 임무조건에서의 각 단일시스템의 성능이 적합함을 확인하였다.

태양광 고고도 장기체공 무인기의 초기 상승 임무 분석 (Initial Climb Mission Analysis of a Solar HALE UAV)

  • 신교식;황호연;안존
    • 한국항공우주학회지
    • /
    • 제42권6호
    • /
    • pp.468-477
    • /
    • 2014
  • 본 연구에서는 태양광 고고도 무인항공기가 어떻게 태양광 에너지만을 이용해서 지상에서 이륙, 상승비행을 하여 임무고도인 18 km 지점까지 도달할 수 있는지에 관한 연구를 수행하였다. 주익면적 $35.98m^2$와 가로세로비 25의 글라이더 형태의 항공기가 기준 항공기 형상으로 사용되었다. 미국 나사의 공개 프로그램인 OpenVSP와 XFLR5을 사용하여 형상변수 및 양력계수와 항력계수를 계산하였으며, 태양광으로부터의 가용에너지와 상승비행에 필요한 에너지 균형을 통해 항공기의 상승비행을 예측하였다. 각 고도에서 비행속도를 최소화하여 최소시간 상승비행이 가능하도록 하였고 이륙시간에 따른 임무고도 도달까지의 총소요시간과 소모되는 에너지량을 예측하였다. 또한 편서풍과 비행속도에 의한 항공기의 이동거리를 계산하였다.

고고도 장기체공 무인기 구조 설계 및 해석 (Structural Design and Analysis for High Altitude Long Endurance UAV)

  • 김성준;이승규;김성찬;김태욱;김승호
    • 한국항공운항학회지
    • /
    • 제22권3호
    • /
    • pp.68-73
    • /
    • 2014
  • Research is being carried out at Korea Aerospace Research Institute with aim of design a HALE UAV(High Altitude Long Endurance Unmanned Air Vehicle). HALE UAVs are ideally suited to provide surveillance, remote sensing and communication relay capabilities for both military and civilian applications. HALE UAVs typically cruise at an altitude between 15 km and 20 km, travelling at low speed and circling specific area of interest. Airframe structural point of view, weight reduction of the airframe structure is the most important method to improve the flight efficiency. High modulus CFRP(Carbon Fiber Reinforced Polymer) has been used in designing the structure in order to minimize the airframe weight. With respect to structural design and analysis, the key question is to decide an adequate airworthiness certification base to define suitable load cases for sizing of various structural components. In this study, FAR(Federal Aviation Regulation) 23 have constituted the guidance and benchmark throughout all structural studies. And the MSC/FlightLoads was introduced to analyze the flight loads for the HALE UAV. The MSC/FlightLoads can compute the flexible air load and analyzed loads are distributed on structural model directly. A preliminary structural concept was defined in accordance with the estimated inertial and aerodynamic loads. A FEM analysis was carried out using the MSC/Nastran code to predict the static and dynamic behaviour of UAV structure.

고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석 (Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV)

  • 이양지;이동호;강영석;임병준
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.