• Title/Summary/Keyword: 장기모니터링시스템

Search Result 175, Processing Time 0.027 seconds

A Case Study on the Conservation and Value Improvement of Korean Geological Heritage (우리나라 지질유산의 보존과 가치 증진을 위한 사례 연구)

  • Lim, Jong-deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.114-135
    • /
    • 2013
  • Among the UNESCO World Heritage Sites, the proportion of natural heritage to cultural heritage is relatively small. In 2007, the "Jeju Volcanic Island and Larva Tubes" was the first one that was designated as an UNESCO World Natural Heritage Site in Korea. The growing Korean geological heritage condition and conservation case studies on management of the geological heritage were examined in this study. Furthermore, the purpose of this study is to show future driving strategy for conservation and improvement plan on our geological heritage. Natural Monuments as a state-designated natural property and Geoparks as a new application system for geological heritage are important to conserve our geological heritage. Public engagement through establishment of visitor centers is definitely needed to improve education and promotion. The study includes field investigation for the "Wadden Sea", an World Natural Heritage Site for a mud flat, interviews with staffs and experts who are responsible for investigating and managing the site. Three factors can likely be attributed to its successful management and conservation policy for the "Wadden Sea". First of all, there is an operation for integrated management system and joint secretariat for research and monitoring. Next, researchers invigorate the visitor centers for promotion and education on geological heritage. Finally, experts and staffs implement various research topics and projects based on a long-range plan. The study was carried out to evaluate the present condition of our geological heritage and to make a proposal as a policy to improve value and conserve them. In conclusion, this study provided future discussion that may help researchers to make a decision on long-term policies for the geological subject of Korean natural heritage.

A Study on Model for Social Return for the Prevention of Recidivism of Sexual Violence Criminals Based on Big Data (빅데이터 기반 성폭력범죄자 재범방지를 위한 사회지원모델에 관한 연구)

  • Oh, Sei Youen
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.535-542
    • /
    • 2021
  • Purpose: The purpose of this study is to prevent recidivism by recognizing the seriousness of recidivism against sexual offenders under the age of 13 and providing customized social adaptation services based on risk. Method: The study evaluate the efficiency of existing models and proposed model systems, and compare and review what features and operational differences exist from existing models. Result: The proposed model will collect data from related agencies on sexual violence offenders with a high risk of recidivism and classify them into three risk groups through risk algorithms to provide social adaptation services for each risk group. In addition, by monitoring primary social support matching data, storing and re-analyzing the results data to rematch social support services, the model differs from the existing model in preventing recidivism of sexual violence offenders from a long-term perspective. Conclusion: The proposed model of this study is meaningful in that it proposed the basic data of a response system to prevent recidivism from a long-term perspective of sexual offenders with the highest risk of recidivism by collecting and analyzing data on sexual offenders.

Construction Technology Research and Development Planning - In the Case of Real-time Construction Project Monitoring System Development - (건설 기술 연구 개발을 위한 기술 기획 - 적시 시공을 위한 시공 현장 모니터링 기술 사례를 기반으로 -)

  • Kim, Changyoon;Kim, Hyoungkwan;Kim, Changwan;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.849-857
    • /
    • 2008
  • Technology roadmapping is one of the widely used technology planning methodologies. Using a technology roadmap, the researchers can increase the possibility of the project success by systematic management of research contents, budgets, and commercialization strategies. Currently, Ministry of Land, Transport and Maritime Affairs has a plan to increase the research fund to improve the construction industry. As a result, the number of long term research projects with more than five years of research period, is increasing. This entails the need for a methodology for the systematic planning and management of research. However, the construction industry has the characteristics that the research results should ultimately be implemented in an outdoor environment. Through processes of diverse literature reviews, questionnaire-based survey, and pilot research, this paper presents a systematic procedure for the development of construction technology roadmaps, which can consider the unique nature of the construction industry. Based on the procedure, a technology roadmap for intelligent construction monitoring is also developed.

The Continuous Measurement of CO2 Efflux from the Forest Soil Surface by Multi-Channel Automated Chamber Systems (다중채널 자동챔버시스템에 의한 삼림토양의 이산화탄소 유출량의 연속측정)

  • Joo, Seung Jin;Yim, Myeong Hui;Ju, Jae-Won;Won, Ho-yeon;Jin, Seon Deok
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 2021
  • Multichannel automated chamber systems (MCACs) were developed for the continuous monitoring of soil CO2 efflux in forest ecosystems. The MCACs mainly consisted of four modules: eight soil chambers with lids that automatically open and close, an infrared CO2 analyzer equipped with eight multichannel gas samplers, an electronic controller with time-relay circuits, and a programmable logic datalogger. To examine the stability and reliability of the developed MCACs in the field during all seasons with a high temporal resolution, as well as the effects of temperature and soil water content on soil CO2 efflux rates, we continuously measured the soil CO2 efflux rates and micrometeorological factors at the Nam-san experimental site in a Quercus mongolica forest floor using the MCACs from January to December 2010. The diurnal and seasonal variations in soil CO2 efflux rates markedly followed the patterns of changes in temperature factors. During the entire experimental period, the soil CO2 efflux rates were strongly correlated with the temperature at a soil depth of 5 cm (r2 = 0.92) but were weakly correlated with the soil water content (r2 = 0.27). The annual sensitivity of soil CO2 efflux to temperature (Q10) in this forest ranged from 2.23 to 3.0, which was in agreement with other studies on temperate deciduous forests. The annual mean soil CO2 efflux measured by the MCACs was approximately 11.1 g CO2 m-2 day-1. These results indicate that the MCACs can be used for the continuous long-term measurements of soil CO2 efflux in the field and for simultaneously determining the impacts of micrometeorological factors.

Present Status of the Quality Assurance and Control (QA/QC) for Korean Macrozoobenthic Biological Data and Suggestions for its Improvement (해양저서동물의 정량적 자료에 대한 정도관리 현실과 개선안)

  • CHOI, JIN-WOO;KHIM, JONG SEONG;SONG, SUNG JOON;RYU, JONGSEONG;KWON, BONG-OH
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.263-276
    • /
    • 2021
  • Marine benthic organisms have been used as the indicators for the environment assessment and recently considered as a very important component in the biodiversity and ecosystem restoration. In Korean waters, the quantitative data on marine benthos was used as one of major components for the marine pollution assessment for 50 years since 1970s. The species identification which is an important factor for the quantitative biological data was mainly performed by the marine benthic ecologists. This leads to the deterioration of the data quality on marine benthos from the misidentication of major taxonomic groups due to the lack of taxonomic expertise in Korea. This taxonomic problem has not been solved until now and remains in most data from national research projects on the marine ecosystems in Korean waters. Here we introduce the quality assurance and control (QA/QC) system for the marine biological data in UK, that is, NMBAQC (Northeast Atlantic Marine Biological Analytic and Quality Control) Scheme which has been performed by private companies to solve similar species identification problems in UK. This scheme asks for all marine laboratories which want to participate to any national monitoring programs in UK to keep their identification potency at high level by the internal quality assurance systems and provides a series of taxonomic workshops and literature to increase their capability. They also performs the external quality control for the marine laboratories by performing the Ring Test using standard specimens on various faunal groups. In the case of Korea, there are few taxonomic expertise in two existing national institutions and so they can't solve the taxonomic problems in marine benthic fauna data. We would like to provide a few necessary suggestions to solve the taxonomic problems in Korean marine biological data in short-terms and long-terms: (1) the identification of all dominant species in marine biological data should be confirmed by taxonomic expertise, (2) all the national research programs should include taxonomic experts, and (3) establishing a private company, like the Korea marine organism identification association (KMOIA), which can perform the QA/QC system on the marine organisms and support all Korean marine laboratories by providing taxonomic literature and species identification workshops to enhance their potency. The last suggestion needs more efforts and time for the establishment of that taxonomic company by gathering the detailed contents and related opinions from diverse stakeholders in Korea.

An Analysis of Cold Air Generation Area Considering Climate-Ecological Function -A Case Study of Changwon, South Korea- (기후생태적 기능을 고려한 찬공기 생성지역 분석 -창원시를 대상으로-)

  • Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.114-127
    • /
    • 2010
  • The purpose of this study is to find out cold and fresh air producing areas using climate-ecological functions in Changwon city, Gyeongsangnam-do, South Korea. The evaluation of climate-ecological functions were composed of the six factors: patch size with cold air generation and inflow functions, farmland and grassland ratio, mean slope degree, cross section types, mean slope length and roughness of bottom in valley. The analysis results of each evaluation factor in the study area were divided into 5 grades according to the capacity of cold air generation. The first-grade area with the highest factor values for cold air generation was take up 3.51% of the total study area, second grade was 13.48%, third grade was 31.65%, fourth grade was 27.28%, and fifth grade was 24.09%. According to the spatial distribution of cold air producing areas, the valleys around Mt. Bongnim, Changwon tunnel, and Anmin tunnel had higher evaluation grade. It will require the future research to establish the climate-ecological conservation areas and to construct the wind corridor based on the long-term microclimatic monitoring.

Review of Material Flow Analysis Related Activities of Developed Countries for the Improvement of Resources Efficiency and Sustainability (자원 효율성 및 지속 가능성 증진을 위한 선진국 물질흐름분석 관련활동에 대한 평가)

  • Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.615-626
    • /
    • 2006
  • The natural resources and material life-cycle include all human activities related to resources and material extraction, transportation, processing, use, recovery and disposal. Sustainable material management (SMM) is an integrated set of policy approaches targeted on economic agents throughout the material life-cycles and designed to result in economically efficient and environmentally effective material use. The material flows of industrial mineral, ores and fossil fuels have also long been a focal area for environmental policies because of the high environmental pressures associated with extraction, processing, consumption, and final disposal of these materials. OECD work on material flow is to improve the quantitative and analytical knowledge bases about natural resource and material flows within and among countries, so as to better understand the importance of material resources in member countries' economies. In several EU Member States, material flow accounts are part of official statistics. Material flow analysis (MFA) is a valuation method which assesses the efficiency of use of materials using information from material flow accounting. Material flow analysis helps to identify waste of natural resources and other materials in the economy which would otherwise go unnoticed in conventional economic monitoring systems. Resource use and resource efficiency has emerged as a major issue for long-term sustainability and environmental policy.

Extraction of Waterline Using Low Altitude Remote Sensing (저고도 원격탐사 영상 분석을 통한 수륙경계선 추출)

  • Jung, Dawoon;Lee, Jong-Seok;Baek, Ji-Yeon;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.337-349
    • /
    • 2020
  • In this study, Helikite, Low Altitude Remote Sensing (LARS) platform, was used to acquire coastal images. In the obtained image, the land and water masses were divided using four types of region clustering algorithms, and then waterline was extracted using edge detection. Quantitative comparisons were not possible due to the lack of in-situ waterline data. But, based on the image of the infrared band where water masses and land are relatively clear, the waterlines extracted by each algorithm were compared. As a result, it was found that each algorithm differed significantly in the part where the distinction between water masses and land was ambiguous. This is considered to be a difference in the process of selecting the threshold value of the digital number that each algorithm uses to distinguish the regions. The extraction of waterlines through various algorithms is expected to be used in conjunction with a Low Altitude Remote Sensing system that can be continuously monitored in the future to explain the rapid changes in coastal shape through several years of long-term data from fixed areas.

The Comparison of Water Budget and Nutrient Loading from Paddy Field According to the Irrigation Methods (관개방법에 따른 논에서의 수문 및 수질특성에 미치는 영향)

  • Jeon, Ji-Hong;Choi, Jin-Kyu;Yoon, Kwang-Sik;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.118-127
    • /
    • 2005
  • The comparison of water balance and nutrient loading from paddy field with different irrigation management were carried out during 1999 ${\sim}$ 2002 at two different sites; one is irrigated with groundwater and the other is irrigated with surface water. For the surface water irrigated paddy field, irrigation was performed continuously during growing season. Whereas, initial irrigation with groundwater was applied during initial growing season, and the ponded water depth was maintained by natural precipitation since initial irrigation. The runoff frequency of groundwater irrigated paddy field was less than that of surface water irrigated paddy field. The nutrient concentration of ponded water was high by fertilization at early cultural periods, so reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Amount of irrigation water to surface water irrigated paddy field was higher than to groundwater irrigated paddy field and evapotranspiration was similar because it is influenced by climate. Overall input in and output from paddy field irrigated with goundwater were less than that with surface water. This study indicate that efficient water management can reduce surface drainage outflow, save water, and protect water quality. It might be important BMPs for paddy field.

Groundwater Monitoring Network for Earthquake Surveillance and Prediction (국내 지진 감시·예측을 위한 지하수관측망의 활용 방안)

  • Lee, Hyun A;Hamm, Se-Yeong;Woo, Nam C.
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.401-414
    • /
    • 2017
  • To prevent the damages from earthquakes, various researches have been conducted around the world focusing on earthquake prediction and forecasting for several decades. Among various precursory phenomena, changes in groundwater level and quality are considered to be reliable for estimating the time of earthquake occurrence and its magnitude. In effects, some countries impacted by frequent earthquakes have established and operated the groundwater monitoring network for earthquake surveillance and prediction. In Korea, recently researches have begun for using groundwater monitoring techniques for earthquake prediction. In this paper, the groundwater monitoring networks of China, Japan, and the United States were reviewed focusing on the facilities and results of researches to deduce the tasks for earthquake prediction researches using groundwater monitoring techniques in Korea. In results, research needs are suggested in the implementation of groundwater monitoring networks for specifically earthquake surveillance with the real-time monitoring and the measures to quantify the degrees of abnormal changes in the relationship of distance from the earthquake epicenter.