• Title/Summary/Keyword: 잡음증폭

Search Result 225, Processing Time 0.028 seconds

Gain improvement of double-pass two-stage EDFA by using band-rejection filter (필터에 의한 이중경로 2단 EDFA의 이득 향상)

  • 손익부;백장기;이남권;권형우;송재원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.142-143
    • /
    • 2003
  • EDFA의 이득(gain)과 잡음지수(noise figure)는 매우 중요한 특성 중의 하나이다. 전송 시스템에서 필연적으로 발생하는 ASE 잡음을 제거하는 것이 중요하다. EDFA의 중간에 필터(filter)와 아이솔레이터(isolator)를 삽입하여 불필요한 ASE를 제거함으로써 이득과 잡음지수를 향상시킬 수 있으며, 기존의 단일경로(single-pass) EDFA에서 필터의 위치가 40-60% 근처에서 이득과 잡음지수 향상이 가장 크게 된다. 그러나, 거울(mirror)을 사용하여 증폭 효율을 높인 이중경로(double-pass) EDFA에서 필터에 의한 이득 향상에 관한 연구발표는 아직까지 없다. (중략)

  • PDF

A Comparison Study of the Amplification Characteristics of the Seismic Station near Yedang Reservoir using Background Noise, S-wave and Coda wave Energy (배경잡음, S파 및 Coda파 에너지를 이용한 예당저수지 인근부지의 지반증폭 특성에 관한 비교 연구)

  • Wee, Soung-Hoon;Kim, Jun-Kyoung;Yoo, Seong-Hwa;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.7
    • /
    • pp.632-642
    • /
    • 2015
  • Seismograms are composed of 3 characteristics, that is, seismic source, attenuation, and site amplification. Among them, site amplification characteristics should be considered significantly to estimate seismic source and attenuation characteristics with more confidence. This purpose of this study is to estimate the site amplification characteristics at each site using horizontal to vertical (H/V) spectral ratio method. This method, originally proposed by Nakamura (1989), has been applied to study the surface waves in microtremor records. It has been recently extended to the shear wave energy of strong motion and applied to the study of site amplification. This study analyzed the H/V spectral ratio of 6 ground motions respectively using observed data from 4 sites nearby in Yedang Reservoir. And then, site amplification effects at each site, from 3 kinds of seismic energies, that is, S waves, Coda waves energy, and background noise were compared each other. The results suggested that 4 sites showed its own characteristics of site amplification property in specific resonance frequency ranges (YDS: ~11 Hz, YDU: ~4 Hz, YDD: ~7 Hz). Comparison of this study to other studies using different analysis method can give us much more information about dynamic amplification of domestic sites characteristics and site classification.

Performance Analysis of an Opportunistic Cooperative Diversity System with Impulsive Noise in Rayleigh Fading (레일레이 페이딩하에서 임펄시브 잡음을 갖는 기회전송 협동 다이버시티 시스템의 성능해석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.99-105
    • /
    • 2010
  • The most frequently used noise model for the performance analysis of a communication system is additive white Gaussian noise. However impulsive noise model is more practical for the real communication environments, currently the performance analysis of a communication system in impulsive noise is increasing. In this paper, therefore, the performance of a cooperative system, which is recently one of the most intensive research topics, is derived in impulsive noise. We analytically derive and compare the performance of two opportunistic cooperative diversity systems which have an amplify-and-forward (AF) relaying or a decode-and-forward (DF) relaying. It is noticed that the impulsive noise component is increases with decreasing the average number of impulses in impulsive noise, consequently the performance of two systems is degraded in high SNR region. Also it is shown that the performance of the opportunistic cooperative system with DF relaying is superior to that with AF relaying.

Audio Listening Enhancement in Adverse Environment based on Loudness Restoration (라우드니스 복원에 기반한 잡음 환경에서의 오디오 청취 향상)

  • Pak, Junhyeong;Shin, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.210-216
    • /
    • 2013
  • It is hard to listen to the music clearly in the presence of background noise. In this paper, a method that modifies the audio signal automatically to enhance the audio listening experience in adverse environment is proposed. Specifically, the method that amplifies the audio signal so that the perceived loudness of audio signal in each band becomes similar to that of the noiseless signal. The loudness perception model proposed by Moore et. al is utilized. Extending the previous work that is applied to speech reinforcement, the full band signal sampled at 48kHz is manipulated based on the loudness restoration principle. Moreover, based on the observation that the audio clarity is compromised even with loudness restored signal, a modification that intentionally boosts high frequency loudness more than lower band is also proposed. Experimental results showed that the proposed algorithm can enhance the audio listening experience in adverse environment.

Domestic Development and Module Manufacturing Results of W-band PA and LNA MMIC Chip (W-대역 전력증폭 및 저잡음증폭 MMIC의 국내개발 및 모듈 제작 결과)

  • Kim, Wansik;Lee, Juyoung;Kim, Younggon;Yu, Kyungdeok;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.29-34
    • /
    • 2021
  • For the purpose of Application to the small radar sensor, the MMIC Chips, which are the core component of the W-band, was designed in Korea according to the characteristics of the transceiver and manufactured by 60nm GaN and 0.1㎛ GaAs pHEMT process. The output power of PA is 28 dBm at center frequency of W-band and Noise figure is 6.7 dB of switch and LNA MMIC. Output power and Noise figure of MMIC chips developed in domestic was applied to the transmitter and receiver module through W-band waveguide low loss transition structure design and impedance matching to verify the performance after the fabrication are 26.1~27.7 dBm and 7.85~10.57 dB including thermal testing, and which are close to the analysis result. As a result, these are judged that the PA and Switch and LNA MMICs can be applied to the small radar sensor.

A Study on the Fabrication of the Low Noise Amplifier Using Resistive Decoupling circuit and Series feedback Method (저항결합 회로와 직렬 피드백 기법을 이용한 저잡음 증폭기의 구현에 관한 연구)

  • 유치환;전중성;황재현;김하근;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.190-195
    • /
    • 2000
  • This paper presents the fabrication of the LNA which is operating at 2.13∼2.16 GHz for IMT-2000 lot-end receiver using series feedback and resistive decoupling circuit. Series feedback added to the source lead of a transistor keep the low noise characteristics and drop the input reflection coefficient of amplifier simultaneously. Also, it increases the stability of the LNA. Resistive decoupling circuit is suitable for input stage matching because a signal at low frequency is dissipated by a resistor in the matching network The amplifier consist of GaAs FET ATF-10136 for low noise stage and VNA-25 which is internally matched MMIC for high gain stage. The amplifier is fabricated with both the RF circuits and self bias circuit on the Teflon substrate with 3.5 permittivity. The measured results of the LNA which is fabricated using above design technique are presented more than 30 dB in gain P$\_$ldB/ 17 dB and less than 0.7 dB in noise figure, 1.5 in input$.$output SWR(Standing Wave Ratio).

  • PDF

A Study on the Fabrication of the Low Noise Amplifier Using a Series Feedback Method (직렬 피드백 기법을 이용한 저잡음 증폭기의 구현에 관한 연구)

  • 김동일;유치환;전중성;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • This paper presents the fabrication of the LNA which is operating at 2.13 ~ 2.16 GHz for IMT-2000 front-end receiver using series feedback and resistive decoupling circuit. Series feedback added to the source lead of a GaAs FET keeps the low noise characteristics and drops the input reflection coefficient of a low noise amplifier simultaneously. Also, it increases the stability of the LNA. Resistive decoupling circuit is suitable for input stage matching because a signal at low frequency is dissipated by a resistor in the matching network. The amplifier consists of GaAs FET ATF-10136 for low noise stage and VNA-25 which is internally matched MMIC for high gain stage. The amplifier is fabricated with both the RF circuits and self bias circuit on the Teflon substrate with 3.5 permittivity. The measured results of the LNA which is fabricated using the above design technique are presented more than 30 dB in gain, PldB 17 dB and less than 0.7 dB in noise figure, 1.5 in inputㆍoutput SWR(Standing Wave Ratio).

  • PDF

A 3 Stage MMIC Low Noise Amplifier for the Ka Band Satellite Communications and BWLL System (Ka 대역 위성통신 및 BWLL 시스템용 3단 MMIC 저잡음 증폭기 설계 및 제작)

  • 염인복;정진철;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.71-76
    • /
    • 2001
  • A Ka Band 3-stage MMIC (Monolithic Microwave Integrated Circuits) LNA (Low Noise Amplifiers) has been designed and fabricated far the Ka band satellite communications and BWLL(Broad Band Wireless Local Loop)system. The MMIC LNA consists of two single-ended type amplification stages and one balanced type amplification stage to satisfy noise figure, high gain and amplitude linearity. The 0.15${\mu}{\textrm}{m}$ pHEMT has been used to provide a ultra low noise figure and high gain amplification. Series and Shunt feedback circuits and λ/4 short lines were inserted to ensure high stability over the frequency range form DC to 80 GHz. The size of the MMIC LNA is 3.1mm$\times$2.4mm(7.44mm$^2$). The on wafer measured performance of the MMIC LNA, which agreed with the designed performance, showed the noise figure of less than 2.0 dB, and the gain of more than 26 dB, over frequency ranges from 22 GHz to 30 GHz.

  • PDF

Iterative Image Restoration using Adaptive Directional Regularization (적응적인 방향성 정칙화 연산자를 이용한 반복 영상복원)

  • Kim, Yong-Hun;Shin, Hyoun-Jin;Yi, Tai-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.862-867
    • /
    • 2006
  • To restore image degraded by blur and additive noise in the optical and electrical system, a regularized iterative restoration is used. A regularization operator is usually applied to all over the image without considering the local characteristics of image in conventional method. As a result, ringing artifacts appear in edge regions and the noise is amplified in flat regions. To solve these problems we propose an adaptive regularization iterative restoration considering the characteristic of edge and flat regions using directional regularization operator. Experimental results show that the proposed method suppresses the noise amplification in flat regions, and restores the edge more sharply in edge regions.

Finding Optimal Installation Depth of Strong Motion Seismometers for Seismic Observation (지진 관측을 위한 최적 설치심도 조사 방법 연구)

  • Seokho Jeong;Doyoon Lim ;Eui-Hong Hwang;Jae-Kwang Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • We installed temporary strong motion seismometers at the ground surface, 1 m, 2 m, and 9 m at an existing seismic station that houses permanent seismometers installed at 20 m and 100 m, to investigate the influence of installation depth on the recorded ambient and anthropogenic noise level and the characteristics of earthquake signals. Analysis of the ambient noise shows that anthropogenic noise dominates where vibration period T < 1 s at the studied site, whereas wind speed appears to be strongly correlated with the noise level at T > 1 s. Frequency-wavenumber analysis of 2D seismometer array suggests that ambient noise in short periods are predominantly body waves, rather than surface waves. The level of ambient noise was low at 9 m and 20 m, but strong amplification of noise level at T < 0.1 s was observed at the shallow seismometers. Both the active-source test result and the recorded earthquake data demonstrated that the signal level is decreased with the increase of depth. Our result also shows that recorded motions at the ground and 1 m are strongly amplified at 20 Hz (T = 0.05 s), likely due to the resonance of the 3 m thick soil layer. This study demonstrates that analysis of ambient and active-source vibration may help find optimal installation depth of strong motion seismometers. We expect that further research considering various noise environments and geological conditions will be helpful in establishing a guideline for optimal installation of strong motion seismometers.