• 제목/요약/키워드: 잡음감소

Search Result 823, Processing Time 0.022 seconds

Usefulness Evaluation of Artifacts by Bone Cement of Percutaneous Vertebroplasty Performed Patients and CT Correction Method in Spine SPECT/CT Examinations (척추 뼈 SPECT/CT검사에서 경피적 척추성형술 시행 환자의 골 시멘트로 인한 인공물과 CT보정방법의 유용성 평가)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.49-61
    • /
    • 2014
  • Purpose: With the aging of the population, the attack rate of osteoporotic vertebral compression fracture is in the increasing trend, and percutaneous vertebroplasty (PVP) is the most commonly performed standardized treatment. Although there is a research report of the excellence of usefulness of the SPECT/CT examination in terns of the exact diagnosis before and after the procedure, the bone cement material used in the procedure influences the image quality by forming an artifact in the CT image. Therefore, the objective of the research lies on evaluating the effect the bone cement gives to a SPECT/CT image. Materials and Methods: The images were acquired by inserting a model cement to each cylinder, after setting the background (3.6 kBq/mL), hot cylinder (29.6 kBq/mL) and cold cylinder (water) to the NEMA-1994 phantom. It was reconstructed with Astonish (Iterative: 4 Subset: 16), and non attenuation correction (NAC), attenuation correction (AC+SC-) and attenuation and scatter correction (AC+SC+) were used for the CT correction method. The mean count by each correction method and the count change ratio by the existence of the cement material were compared and the contrast recovery coefficient (CRC) was obtained. Additionally, the bone/soft tissue ratio (B/S ratio) was obtained after measuring the mean count of the 4 places including the soft tissue(spine erector muscle) after dividing the vertebral body into fracture region, normal region and cement by selecting the 20 patients those have performed PVP from the 107 patients diagnosed of compression fracture. Results: The mean count by the existence of a cement material showed the rate of increase of 12.4%, 6.5%, 1.5% at the hot cylinder of the phantom by NAC, AC+SC- and AC+SC+ when cement existed, 75.2%, 85.4%, 102.9% at the cold cylinder, 13.6%, 18.2%, 9.1% at the background, 33.1%, 41.4%, 63.5% at the fracture region of the clinical image, 53.1%, 61.6%, 67.7% at the normal region and 10.0%, 4.7%, 3.6% at the soft tissue. Meanwhile, a relative count reduction could be verified at the cement adjacent part at the inside of the cylinder, and the phantom image on the lesion and the count increase ratio of the clinical image showed a contrary phase. CRC implying the contrast ratio and B/S ratio was improved in the order of NAC, AC+SC-, AC+SC+, and was constant without a big change in the cold cylinder of the phantom. AC+SC- for the quantitative count, and AC+SC+ for the contrast ratio was analyzed to be the highest. Conclusion: It is considered to be useful in a clinical diagnosis if the application of AC+SC+ that improves the contrast ratio is combined, as it increases the noise count of the soft tissue and the scatter region as well along with the effect of the bone cement in contrast to the fact that the use of AC+SC- in the spine SPECT/CT examination of a PVP performed patient drastically increases the image count and enables a high density of image of the lesion(fracture).

  • PDF

DC Resistivity method to image the underground structure beneath river or lake bottom (하저 지반특성 규명을 위한 전기비저항 탐사)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Cho Seong-Jun;Lee Seong-Kon;Son Jeongsul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.139-162
    • /
    • 2002
  • Since weak zones or geological lineaments are likely to be eroded, weak zones may develop beneath rivers, and a careful evaluation of ground condition is important to construct structures passing through a river. Dc resistivity surveys, however, have seldomly applied to the investigation of water-covered area, possibly because of difficulties in data aquisition and interpretation. The data aquisition having high quality may be the most important factor, and is more difficult than that in land survey, due to the water layer overlying the underground structure to be imaged. Through the numerical modeling and the analysis of case histories, we studied the method of resistivity survey at the water-covered area, starting from the characteristics of measured data, via data acquisition method, to the interpretation method. We unfolded our discussion according to the installed locations of electrodes, ie., floating them on the water surface, and installing at the water bottom, since the methods of data acquisition and interpretation vary depending on the electrode location. Through this study, we could confirm that the dc resistivity method can provide the fairly reasonable subsurface images. It was also shown that installing electrodes at the water bottom can give the subsurface image with much higher resolution than floating them on the water surface. Since the data acquired at the water-covered area have much lower sensitivity to the underground structure than those at the land, and can be contaminated by the higher noise, such as streaming potential, it would be very important to select the acquisition method and electrode array being able to provide the higher signal-to-noise ratio data as well as the high resolving power. The method installing electrodes at the water bottom is suitable to the detailed survey because of much higher resolving power, whereas the method floating them, especially streamer dc resistivity survey, is to the reconnaissance survey owing of very high speed of field work.

  • PDF

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.