소노부이는 수중 음향 정보를 수집하는 일회용 장치로 특정지역에서 수집된 신호를 주변의 항공기 또는 함정으로 송신하는 역할을 수행하고 임무를 완수하면 해저로 가라앉도록 설계되어 있다. 이러한 소노부이 신호 송·수신 시스템의 경우 주파수 분할 다중화나 가우시안 주파수 편이와 같은 기법을 활용하여 신호를 변·복조하여 송·수신한다. 하지만 이러한 방법은 전송해야할 정보의 양이 많고 변조와 복조방법이 비교적 단순하여 보안성이 낮은 단점이 있다. 따라서, 본 논문에서는 오토인코더를 이용하여 송신 신호를 저차원의 잠재 벡터로 변조하여 잠재 벡터를 항공기 또는 함정으로 전송하고 수신한 잠재벡터를 복조하여 보안성을 향상시키고 전송정보량을 기존 전송방법 대비 약 100배 감소시킬 수 있는 방법을 제안하였다. 모의실험을 통해 제안한 방법으로 복원된 샘플 스펙트로그램을 확인한 결과 저차원의 잠재 벡터로부터 원본 신호 복원이 가능함을 확인할 수 있었다.
클러스터링은 데이터의 정답값(실제값)이 없는 데이터를 기반으로 데이터의 특징벡터의 거리 기반 등으로 군집화를 하는 비지도학습 방법이다. 이 방법은 이미지, 텍스트, 음성 등 다양한 데이터에 대해서 라벨링이 없이 적용할 수 있다는 장점이 있다. 기존 클러스터링을 하기 위해 차원축소 기법을 적용하거나 특정 특징만을 추출하여 군집화하는 방법이 적용되었다. 하지만 딥러닝 기반 모델이 발전하면서 입력 데이터를 잠재 벡터로 표현하는 오토인코더, 생성 적대적 네트워크 등을 통해서 딥 클러스터링의 기술이 연구가 되고 있다. 본 연구에서, 딥러닝 기반의 딥 클러스터링 기법을 제안하였다. 이 방법에서 오토인코더를 이용하여 입력 데이터를 잠재 벡터로 변환하고 이 잠재 벡터를 클러스터 구조에 맞게 벡터 공간을 구성 및 k-평균 클러스터링을 하였다. 실험 환경으로 pytorch 머신러닝 라이브러리를 이용하여 데이터셋으로 MNIST와 Fashion-MNIST을 적용하였다. 모델로는 컨볼루션 신경망 기반인 오토인코더 모델을 사용하였다. 실험결과로 k가 10일 때, MNIST에 대해서 89.42% 정확도를 가졌으며 Fashion-MNIST에 대해서 56.64% 정확도를 가진다.
최근 지능화된 사이버 위협이 지속적으로 증가함에 따라 기존의 패턴 혹은 시그니처 기반의 침입 탐지 방식은 새로운 유형의 사이버 공격을 탐지하는데 어려움이 있다. 따라서 데이터 학습 기반 인공지능 기술을 적용한 이상 징후 탐지 방법에 관한 연구가 증가하고 있다. 또한 지도학습 기반 이상 탐지 방식은 학습을 위해 레이블 된 이용 가능한 충분한 데이터를 필요로 하기 때문에 실제 환경에서 사용하기에는 어려움이 있다. 최근에는 정상 데이터로 학습하고 데이터 자체에서 패턴을 찾아 이상 징후를 탐지하는 비지도 학습 기반의 방법에 대한 연구가 활발히 진행되고 있다. 그러므로 본 연구는 시퀀스 로그 데이터로부터 유용한 시퀀스 정보를 보존하는 잠재 벡터(Latent Vector)를 추출하고, 추출된 잠재 벡터를 사용하여 이상 탐지 학습 모델을 개발하는데 있다. 각 시퀀스의 특성들에 대응하는 밀집 벡터 표현을 생성하기 위하여 Word2Vec을 사용하였으며, 밀집 벡터로 표현된 시퀀스 데이터로부터 잠재 벡터를 추출하기 위하여 비지도 방식의 오토인코더(Autoencoder)를 사용하였다. 개발된 오토인코더 모델은 시퀀스 데이터에 적합한 순환신경망 GRU(Gated Recurrent Unit) 기반의 잡음 제거 오토인코더, GRU 네트워크의 제한적인 단기 기억문제를 해결하기 위한 1차원 합성곱 신경망 기반의 오토인코더 및 GRU와 1차원 합성곱을 결합한 오토인코더를 사용하였다. 실험에 사용된 데이터는 시계열 기반의 NGIDS(Next Generation IDS Dataset) 데이터이며, 실험 결과 GRU 기반의 오토인코더나, 1차원 합성곱 기반의 오토인코더를 사용한 모델보다 GRU와 1차원 합성곱을 결합한 오토인코더가 훈련 데이터로부터 유용한 잠재 패턴을 추출하기 위한 학습 시간적 측면에서 효율적이었고 이상 탐지 성능 변동의 폭이 더 작은 안정된 성능을 보였다.
본 논문에서는 정보 검색 분야에서 잘 알려진 잠재 의미 분석 방법과 계층적 군집화 방법의 단점을 상호 보완하여 보다 효율적인 정보 검색을 위한 혼합형 군집화 방법을 제안한다. 먼저, 잠재 의미 분석 방법은 벡터 연산을 통하여 자동적으로 문서 내에 있는 잠재적인 의미를 찾는 정보 검색분야에서 많이 사용되는 고전적인 방법이다. 그러나 이 방법은 언어의 유의성이나 다의성으로 인하여 발생되는 백-오브-워드(bag-of-word) 문제를 가지고 있다. 두 번째 방법인 문서 군집화를 위하여 범용적으로 사용되고 있는 계층적 군집화 방법이다. 이 방법은 이를 통하여 분석된 군집의 질적 측면에서 볼 때, 여전히 단층적 군집들이 많이 형성되어 세부적인 분석을 통한 추가적인 군집화가 필요함을 알 수 있다. 따라서, 본 논문에서는 앞서 언급한 문제점을 해결하기 위하여 혼합적인 방법으로 잠재 의미 분석 방법을 이용한 응집 계층 군집화 방법을 제안한다. 제안한 방법을 이용하여 잘 알려진 두 개의 데이터에 적용하고 기존의 방법과 그 결과를 비교함으로써 군집의 질적 측면에서의 우수함을 보인다.
본 논문은 벡터모델과 확률모델의 성능 비교에 관한 연구이다. 벡터모델로써는 잠재적 의미를 적용한 검색 결과를 찾기 위해 사용되는 LSI 모델을 이용하였다. 확률모델로써는 현재 상용화 단계에 있는 콘도르 정보검색 시스템을 적용하였다. 각 모델 시스템의 검색 성능 비교를 위한 실험은 사용자가 입력한 원래 질의어에 관한 검색 결과를 바탕으로 성능을 비교한 후에, 사전적 의미를 적용한 확장 질의어에 대한 검색 결과를 추가하여 비교하였다. 본 연구에서는 입력된 질의어와 관련된 용어를 추가하여 검색하였을 경우, 확률모델에 비해 벡터모델에서 성능이 대부분의 질의어에 대해서 향상됨을 보인다.
본 논문은 콘텐츠 이미지에 스타일 이미지를 입혀 스타일이 적용된 이미지를 생성하고자 기존의 이미지 대 이미지 방법이 아닌 다중 도메인 스타일 트랜스퍼(style transfer) 방법을 적용한다. 도메인별로 데이터 분포에 대한 다양한 특성을 고려하고, 콘텐츠 데이터의 특징을 잘 보존하면서 높은 품질의 이미지가 생성되도록 잠재 벡터(latent vector)와 가우시안 노이즈를 추가하는 새로운 GAN의 생성자(generator) 아키텍처를 제안한다. 콘텐츠 이미지가 도메인별 스타일을 잘 학습할 수 있도록 네트워크를 구성하고 사계절 이미지로 구성된 도메인에 적용하여 고해상도의 스타일 트랜스퍼 결과를 보여준다.
본 논문에서는 가우시안 프로세스 모델을 이용한 벡터 그래픽 캐릭터의 자동 표정 생성 시스템을 제안한다. 제안한 방법은 Russell의 내적 정서 상태의 차원 모형을 근거로 재정의된 캐릭터의 26가지 표정 데이터로 부터 주요 특징 벡터를 추출한다. 그리고 추출된 고차원의 특징 벡터에 대해 SGPLVM이라는 가우시안 프로세스 모델을 이용하여 저차원 특징 벡터를 찾고, 확률분포함수(PDF)를 학습한다. 확률분포함수의 모든 파라메타는 학습된 표정 데이터의 우도를 최대화함으로써 추정할 수 있으며, 이는 2차원 공간에서 사용자가 원하는 얼굴 표정을 실시간으로 선택하기 위해 사용된다. 시뮬레이션 결과 본 논문에서 제안한 표정 생성 프로그램은 얼굴 표정의 작은 데이터셋에도 잘 동작하며, 사용자는 표정과 정서간의 관련성에 관한 사전지식이 없이도 연속되는 다양한 캐릭터의 표정을 생성할 수 있음을 확인할 수 있었다.
단백질의 산업적 생산을 위해 발현벡터의 선정이 중요하지만 이용 가능한 프로모터가 극히 제한적이며 많은 경우 과발현되는 특성과 함께 불용성 응집체가 형성되는 단점을 지닌다. 따라서 다양한 생물로부터 유래된 잠재성이 큰 유전자원(metagenome)에서의 프로모터 발굴과 한정된 숙주를 해결하려는 노력이 요구된다. 선행연구에서 발굴한 metagenome 유래의 항시발현 프로모터를 이용해 대장균의 일반적인 배양조건에서 세포생리에 영향이 적은 신규 항시발현 벡터를 제작하였다. 이를 위해 예측된 프로모터 서열과 MCS를 포함하는 합성 primer를 제작한 후 PCR로 증폭해 발현벡터를 구성한 후, 프로모터 구동여부와 단백질 발현양상 등을 관찰하였다. 인위적으로 도입된 MCS에 GFP, esterase, $\beta$-glucosidase를 클로닝해 단백질 발현양과 가용성을 분석한 결과, 안정적으로 전체단백질의 $2{\sim}3%$ 정도로 발현되며 80% 이상의 높은 가용성을 지닌 단백질의 발현이 유도되는 것으로 확인되었다. 이와 같은 결과는 잠재적인 생물자원의 보고로서 metagenome의 활용가능성을 제시하고 있다. 따라서 다양한 숙주에서 작동하는 프로모터의 발굴 및 발현벡터의 제작을 시도할 경우 단백질의 생산이나 대사공학에 의한 균주개량에 유용하게 활용할 수 있을 것이다.
정보검색 시스템에서 사용자의 질의어가 불완전함에 따라 생기는 검색 효율의 저하를 줄이기 위하여 용어의 상호관련성을 반영함과 동시에 벡터의 공간을 축소하는 LSI 모델을 사용하여 문서 집합으로부터 잠재적 의미 공간을 구축하였다. 또한 의미 공간상에 있는 문서의 분포에 따라 \"개념\"을 추출하기 하기 위해 k-means algorithm을 사용하여 군집화 시켰다. 이로부터 불완전한 초기 사용자 질의어를 의미 공간에 구축된 클러스터링 정보로 수정하여 새로운 질의어를 생성함으로 검색의 효율을 높이고자 하였다. 검색 효율을 측정하기 위해 TREC 데이터를 이용하여 분석하였으며 결과는 질의어의 성격에 따라 달라졌으나 대체적으로 우수한 성능을 보였다.한 성능을 보였다.
GAN(Generative Adversarial Networks)이 합성 이미지 생성 및 기타 다양한 응용 프로그램에 현재 사용되고 있지만, 생성 모델을 제어하기가 어렵다. 문제는 생성 모델의 잠재 공간에 있는데, 이미지 생성과 관련하여 입력된 잠재코드를 받아 특정 텍스트 및 신호에 따라 지정된 대상 속성이 향상되도록 하고 다른 속성은 크게 영향을 받지 않도록 하기 위해서는 상당한 제약이 요구된다. 본 연구에서는 이미지 생성 및 조작과 관련하여 변동 자동 인코더의 잠재 벡터에 관해 특정 제약을 수반한 모델을 제안한다. 제안된 모델에 관해 TensorFlow의 변동 자동 인코더를 통해 실험한 결과 이미지의 생성 및 조작과 관련하여 비교적 우수한 성능을 갖는 것으로 확인된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.