• 제목/요약/키워드: 잠재 벡터

검색결과 56건 처리시간 0.032초

소노부이 신호 송수신을 위한 오토인코더 기반 신호 변복조 기법 (Autoencoder-based signal modulation and demodulation method for sonobuoy signal transmission and reception)

  • 박진욱;석종원;홍정표
    • 한국음향학회지
    • /
    • 제41권4호
    • /
    • pp.461-467
    • /
    • 2022
  • 소노부이는 수중 음향 정보를 수집하는 일회용 장치로 특정지역에서 수집된 신호를 주변의 항공기 또는 함정으로 송신하는 역할을 수행하고 임무를 완수하면 해저로 가라앉도록 설계되어 있다. 이러한 소노부이 신호 송·수신 시스템의 경우 주파수 분할 다중화나 가우시안 주파수 편이와 같은 기법을 활용하여 신호를 변·복조하여 송·수신한다. 하지만 이러한 방법은 전송해야할 정보의 양이 많고 변조와 복조방법이 비교적 단순하여 보안성이 낮은 단점이 있다. 따라서, 본 논문에서는 오토인코더를 이용하여 송신 신호를 저차원의 잠재 벡터로 변조하여 잠재 벡터를 항공기 또는 함정으로 전송하고 수신한 잠재벡터를 복조하여 보안성을 향상시키고 전송정보량을 기존 전송방법 대비 약 100배 감소시킬 수 있는 방법을 제안하였다. 모의실험을 통해 제안한 방법으로 복원된 샘플 스펙트로그램을 확인한 결과 저차원의 잠재 벡터로부터 원본 신호 복원이 가능함을 확인할 수 있었다.

딥러닝 기반의 딥 클러스터링 방법에 대한 분석 (Analysis of deep learning-based deep clustering method)

  • 권현;이준
    • 융합보안논문지
    • /
    • 제23권4호
    • /
    • pp.61-70
    • /
    • 2023
  • 클러스터링은 데이터의 정답값(실제값)이 없는 데이터를 기반으로 데이터의 특징벡터의 거리 기반 등으로 군집화를 하는 비지도학습 방법이다. 이 방법은 이미지, 텍스트, 음성 등 다양한 데이터에 대해서 라벨링이 없이 적용할 수 있다는 장점이 있다. 기존 클러스터링을 하기 위해 차원축소 기법을 적용하거나 특정 특징만을 추출하여 군집화하는 방법이 적용되었다. 하지만 딥러닝 기반 모델이 발전하면서 입력 데이터를 잠재 벡터로 표현하는 오토인코더, 생성 적대적 네트워크 등을 통해서 딥 클러스터링의 기술이 연구가 되고 있다. 본 연구에서, 딥러닝 기반의 딥 클러스터링 기법을 제안하였다. 이 방법에서 오토인코더를 이용하여 입력 데이터를 잠재 벡터로 변환하고 이 잠재 벡터를 클러스터 구조에 맞게 벡터 공간을 구성 및 k-평균 클러스터링을 하였다. 실험 환경으로 pytorch 머신러닝 라이브러리를 이용하여 데이터셋으로 MNIST와 Fashion-MNIST을 적용하였다. 모델로는 컨볼루션 신경망 기반인 오토인코더 모델을 사용하였다. 실험결과로 k가 10일 때, MNIST에 대해서 89.42% 정확도를 가졌으며 Fashion-MNIST에 대해서 56.64% 정확도를 가진다.

비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법 (Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder)

  • 이준우;김강석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권8호
    • /
    • pp.355-364
    • /
    • 2023
  • 최근 지능화된 사이버 위협이 지속적으로 증가함에 따라 기존의 패턴 혹은 시그니처 기반의 침입 탐지 방식은 새로운 유형의 사이버 공격을 탐지하는데 어려움이 있다. 따라서 데이터 학습 기반 인공지능 기술을 적용한 이상 징후 탐지 방법에 관한 연구가 증가하고 있다. 또한 지도학습 기반 이상 탐지 방식은 학습을 위해 레이블 된 이용 가능한 충분한 데이터를 필요로 하기 때문에 실제 환경에서 사용하기에는 어려움이 있다. 최근에는 정상 데이터로 학습하고 데이터 자체에서 패턴을 찾아 이상 징후를 탐지하는 비지도 학습 기반의 방법에 대한 연구가 활발히 진행되고 있다. 그러므로 본 연구는 시퀀스 로그 데이터로부터 유용한 시퀀스 정보를 보존하는 잠재 벡터(Latent Vector)를 추출하고, 추출된 잠재 벡터를 사용하여 이상 탐지 학습 모델을 개발하는데 있다. 각 시퀀스의 특성들에 대응하는 밀집 벡터 표현을 생성하기 위하여 Word2Vec을 사용하였으며, 밀집 벡터로 표현된 시퀀스 데이터로부터 잠재 벡터를 추출하기 위하여 비지도 방식의 오토인코더(Autoencoder)를 사용하였다. 개발된 오토인코더 모델은 시퀀스 데이터에 적합한 순환신경망 GRU(Gated Recurrent Unit) 기반의 잡음 제거 오토인코더, GRU 네트워크의 제한적인 단기 기억문제를 해결하기 위한 1차원 합성곱 신경망 기반의 오토인코더 및 GRU와 1차원 합성곱을 결합한 오토인코더를 사용하였다. 실험에 사용된 데이터는 시계열 기반의 NGIDS(Next Generation IDS Dataset) 데이터이며, 실험 결과 GRU 기반의 오토인코더나, 1차원 합성곱 기반의 오토인코더를 사용한 모델보다 GRU와 1차원 합성곱을 결합한 오토인코더가 훈련 데이터로부터 유용한 잠재 패턴을 추출하기 위한 학습 시간적 측면에서 효율적이었고 이상 탐지 성능 변동의 폭이 더 작은 안정된 성능을 보였다.

정보 검색에서의 잠재 의미 분석 방법을 이용한 응집 계층 군집화 기법 연구 (Agglomerative Hierarchical Clustering Using Latent Semantic Analysis in Information Retrieval)

  • ;강대현;박한샘;권경락;정인정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.952-955
    • /
    • 2014
  • 본 논문에서는 정보 검색 분야에서 잘 알려진 잠재 의미 분석 방법과 계층적 군집화 방법의 단점을 상호 보완하여 보다 효율적인 정보 검색을 위한 혼합형 군집화 방법을 제안한다. 먼저, 잠재 의미 분석 방법은 벡터 연산을 통하여 자동적으로 문서 내에 있는 잠재적인 의미를 찾는 정보 검색분야에서 많이 사용되는 고전적인 방법이다. 그러나 이 방법은 언어의 유의성이나 다의성으로 인하여 발생되는 백-오브-워드(bag-of-word) 문제를 가지고 있다. 두 번째 방법인 문서 군집화를 위하여 범용적으로 사용되고 있는 계층적 군집화 방법이다. 이 방법은 이를 통하여 분석된 군집의 질적 측면에서 볼 때, 여전히 단층적 군집들이 많이 형성되어 세부적인 분석을 통한 추가적인 군집화가 필요함을 알 수 있다. 따라서, 본 논문에서는 앞서 언급한 문제점을 해결하기 위하여 혼합적인 방법으로 잠재 의미 분석 방법을 이용한 응집 계층 군집화 방법을 제안한다. 제안한 방법을 이용하여 잘 알려진 두 개의 데이터에 적용하고 기존의 방법과 그 결과를 비교함으로써 군집의 질적 측면에서의 우수함을 보인다.

정보검색시스템의 확률 및 벡터모델에 대한 질의 확장 검색 성능 평가 (Extended Query Search Performance Evaluations for Vector Model and Probabilistic Model of Information System)

  • 전유정;변동률;박순철
    • 한국산업정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.36-42
    • /
    • 2004
  • 본 논문은 벡터모델과 확률모델의 성능 비교에 관한 연구이다. 벡터모델로써는 잠재적 의미를 적용한 검색 결과를 찾기 위해 사용되는 LSI 모델을 이용하였다. 확률모델로써는 현재 상용화 단계에 있는 콘도르 정보검색 시스템을 적용하였다. 각 모델 시스템의 검색 성능 비교를 위한 실험은 사용자가 입력한 원래 질의어에 관한 검색 결과를 바탕으로 성능을 비교한 후에, 사전적 의미를 적용한 확장 질의어에 대한 검색 결과를 추가하여 비교하였다. 본 연구에서는 입력된 질의어와 관련된 용어를 추가하여 검색하였을 경우, 확률모델에 비해 벡터모델에서 성능이 대부분의 질의어에 대해서 향상됨을 보인다.

  • PDF

A Multi-domain Style Transfer by Modified Generator of GAN

  • Lee, Geum-Boon
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권7호
    • /
    • pp.27-33
    • /
    • 2022
  • 본 논문은 콘텐츠 이미지에 스타일 이미지를 입혀 스타일이 적용된 이미지를 생성하고자 기존의 이미지 대 이미지 방법이 아닌 다중 도메인 스타일 트랜스퍼(style transfer) 방법을 적용한다. 도메인별로 데이터 분포에 대한 다양한 특성을 고려하고, 콘텐츠 데이터의 특징을 잘 보존하면서 높은 품질의 이미지가 생성되도록 잠재 벡터(latent vector)와 가우시안 노이즈를 추가하는 새로운 GAN의 생성자(generator) 아키텍처를 제안한다. 콘텐츠 이미지가 도메인별 스타일을 잘 학습할 수 있도록 네트워크를 구성하고 사계절 이미지로 구성된 도메인에 적용하여 고해상도의 스타일 트랜스퍼 결과를 보여준다.

간단한 사용자 인터페이스에 의한 벡터 그래픽 캐릭터의 자동 표정 생성 시스템 (Automatic facial expression generation system of vector graphic character by simple user interface)

  • 박태희;김재호
    • 한국멀티미디어학회논문지
    • /
    • 제12권8호
    • /
    • pp.1155-1163
    • /
    • 2009
  • 본 논문에서는 가우시안 프로세스 모델을 이용한 벡터 그래픽 캐릭터의 자동 표정 생성 시스템을 제안한다. 제안한 방법은 Russell의 내적 정서 상태의 차원 모형을 근거로 재정의된 캐릭터의 26가지 표정 데이터로 부터 주요 특징 벡터를 추출한다. 그리고 추출된 고차원의 특징 벡터에 대해 SGPLVM이라는 가우시안 프로세스 모델을 이용하여 저차원 특징 벡터를 찾고, 확률분포함수(PDF)를 학습한다. 확률분포함수의 모든 파라메타는 학습된 표정 데이터의 우도를 최대화함으로써 추정할 수 있으며, 이는 2차원 공간에서 사용자가 원하는 얼굴 표정을 실시간으로 선택하기 위해 사용된다. 시뮬레이션 결과 본 논문에서 제안한 표정 생성 프로그램은 얼굴 표정의 작은 데이터셋에도 잘 동작하며, 사용자는 표정과 정서간의 관련성에 관한 사전지식이 없이도 연속되는 다양한 캐릭터의 표정을 생성할 수 있음을 확인할 수 있었다.

  • PDF

메타게놈에서 발굴한 프로모터를 장착한 새로운 항시발현 벡터의 가치평가 (Evaluation of Novel Constitutive Expression Vectors Equipped with Mined Promoters from Metagenome)

  • 한상수;김근중
    • 한국미생물·생명공학회지
    • /
    • 제36권4호
    • /
    • pp.260-267
    • /
    • 2008
  • 단백질의 산업적 생산을 위해 발현벡터의 선정이 중요하지만 이용 가능한 프로모터가 극히 제한적이며 많은 경우 과발현되는 특성과 함께 불용성 응집체가 형성되는 단점을 지닌다. 따라서 다양한 생물로부터 유래된 잠재성이 큰 유전자원(metagenome)에서의 프로모터 발굴과 한정된 숙주를 해결하려는 노력이 요구된다. 선행연구에서 발굴한 metagenome 유래의 항시발현 프로모터를 이용해 대장균의 일반적인 배양조건에서 세포생리에 영향이 적은 신규 항시발현 벡터를 제작하였다. 이를 위해 예측된 프로모터 서열과 MCS를 포함하는 합성 primer를 제작한 후 PCR로 증폭해 발현벡터를 구성한 후, 프로모터 구동여부와 단백질 발현양상 등을 관찰하였다. 인위적으로 도입된 MCS에 GFP, esterase, $\beta$-glucosidase를 클로닝해 단백질 발현양과 가용성을 분석한 결과, 안정적으로 전체단백질의 $2{\sim}3%$ 정도로 발현되며 80% 이상의 높은 가용성을 지닌 단백질의 발현이 유도되는 것으로 확인되었다. 이와 같은 결과는 잠재적인 생물자원의 보고로서 metagenome의 활용가능성을 제시하고 있다. 따라서 다양한 숙주에서 작동하는 프로모터의 발굴 및 발현벡터의 제작을 시도할 경우 단백질의 생산이나 대사공학에 의한 균주개량에 유용하게 활용할 수 있을 것이다.

잠재적 의미와 k-means 군집화를 이용한 개념추출 검색 (Extraction of Concept by Latent Semantic Indexing and k-means Clustering)

  • 장유진;임호섭;박기림;김민구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.22-24
    • /
    • 2001
  • 정보검색 시스템에서 사용자의 질의어가 불완전함에 따라 생기는 검색 효율의 저하를 줄이기 위하여 용어의 상호관련성을 반영함과 동시에 벡터의 공간을 축소하는 LSI 모델을 사용하여 문서 집합으로부터 잠재적 의미 공간을 구축하였다. 또한 의미 공간상에 있는 문서의 분포에 따라 \"개념\"을 추출하기 하기 위해 k-means algorithm을 사용하여 군집화 시켰다. 이로부터 불완전한 초기 사용자 질의어를 의미 공간에 구축된 클러스터링 정보로 수정하여 새로운 질의어를 생성함으로 검색의 효율을 높이고자 하였다. 검색 효율을 측정하기 위해 TREC 데이터를 이용하여 분석하였으며 결과는 질의어의 성격에 따라 달라졌으나 대체적으로 우수한 성능을 보였다.한 성능을 보였다.

  • PDF

이미지 생성을 위한 변동 자동 인코더 분산 제약 (Variational Auto Encoder Distributed Restrictions for Image Generation)

  • 김용길
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권3호
    • /
    • pp.91-97
    • /
    • 2023
  • GAN(Generative Adversarial Networks)이 합성 이미지 생성 및 기타 다양한 응용 프로그램에 현재 사용되고 있지만, 생성 모델을 제어하기가 어렵다. 문제는 생성 모델의 잠재 공간에 있는데, 이미지 생성과 관련하여 입력된 잠재코드를 받아 특정 텍스트 및 신호에 따라 지정된 대상 속성이 향상되도록 하고 다른 속성은 크게 영향을 받지 않도록 하기 위해서는 상당한 제약이 요구된다. 본 연구에서는 이미지 생성 및 조작과 관련하여 변동 자동 인코더의 잠재 벡터에 관해 특정 제약을 수반한 모델을 제안한다. 제안된 모델에 관해 TensorFlow의 변동 자동 인코더를 통해 실험한 결과 이미지의 생성 및 조작과 관련하여 비교적 우수한 성능을 갖는 것으로 확인된다.